【InternLM训练营第二期-初夏】1. 书生·浦语大模型开源开放体系

1 大模型介绍

大模型主要分为:专用模型和通用模型

专用模型:针对特定任务,一个模型解决一个问题

通用模型(目前的发展方向):一个模型应对多种任务和多种模态

在这里插入图片描述

1.1 InternLM2体系

InterLM2包括了7B和20B两个不同的规格,每一个规格都包含了三个模型版本,分别是InternLM-Base、InternLM2、InternLM2-Chat
在这里插入图片描述

LLM的本质是在**完成语言建模**这一任务,因此需要高质量的语料库

如何获取? 通过新一代数据清洗过滤技术:

1、多维度数据价值评估

2、高质量语料驱动的数据富集

3、有针对性地数据补齐

1.2 从模型到应用

在这里插入图片描述

根据业务场景、算力需求、环境交互等不同要求,对选取的模型进行微调,并完成模型的评测和部署

2 书生蒲语全链条开源开放体系

在这里插入图片描述

2.1 数据

数据集获取 https://opendatalab.org.cn

在这里插入图片描述

作为训练LLM的训练集必须满足 1.数据量足够大 2.数据分布足够均匀 3. 融合多种模态的数据 并且语料库需要满足主流价值观和法律规定

2.2 预训练

在这里插入图片描述

2.3 微调

微调的目的是为了让模型更适合于不同领域的知识需求

针对LLM不同的下游任务,主要有增量续训和有监督微调两种方式:
增量续训:让基座模型学到一些新的知识,比如垂类领域知识(训练数据来源:文章、书籍、代码等)

有监督微调:让模型学会理解各种指令并学会交互式对话,或者注入少量领域知识(训练数据来源:高质量的对话问答数据)

在这里插入图片描述

LoRA是一种轻量级微调方法(部分参数微调),通过矩阵的低秩分解来学习到真正重要的参数权重,降低计算开销

InternLM2使用的微调方法是Xtuner,可以适配多种生态(多种微调方法)以及多种硬件

2.4 评测

在这里插入图片描述

OpenCompass2.0是一个评测体系,包括了:

Compassrank:中立全面的性能榜单

CompassKit:大模型评测全栈工具链

CompassHub:高质量评测基准社区

在这里插入图片描述

通过对不同LLM的评测,目前还存在一些待提高的方面:

1、整体能力仍有较大提升空间(循环评测策略:随机更换选项顺序,避免猜答案)

2、复杂推理仍然是短板,并且很依赖于模型大小

3、在“理科”推理能力(数学、推理、代码)方面,很依赖于模型大小

4、模型需要提高偏好对齐、对话体验等主观性能

2.5 部署

在这里插入图片描述

在这里插入图片描述

2.6 智能体(交互应用)

轻量级智能体框架:Lagent

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值