算法:判断能否形成等差数列

leetcode 判断能否形成等差数列
在这里插入图片描述

给你一个数字数组 arr 。

如果一个数列中,任意相邻两项的差总等于同一个常数,那么这个数列就称为 等差数列 。

如果可以重新排列数组形成等差数列,请返回 true ;否则,返回 false 。


代码:

void quiksort(int * arr, int start, int end) {
    if (start < end) {
        int left = start, right = end;
        int tmp = arr[start];
        while (left < right) {
            while (left < right && arr[right] >= tmp) right--;
            if (left < right) {
                arr[left] = arr[right];
                left++;
            }
            while (left < right && arr[left] < tmp) left++;
            if (left < right) {
                arr[right] = arr[left];
                right--;
            }
        }
        arr[right] = tmp;
        quiksort(arr, start, right - 1);
        quiksort(arr, right + 1, end);
    }
}

bool canMakeArithmeticProgression(int* arr, int arrSize){

    int tmp = arr[1] - arr[0];
    for (int i = 2; i < arrSize; i++) {
        if ((arr[i] - arr[i - 1]) != tmp) {
            quiksort(arr, 0, arrSize - 1);
            tmp = arr[1] - arr[0];
            for (i = 2; i < arrSize; i++) { 
                if ((arr[i] - arr[i - 1]) != tmp) return false;
            }
        };
    }
    return true;
}

这里特别注意,如果当前数组不是一个等差数列,还需要对其进行排序,再判断其是否为等差数列。

其中,一个问题,可不可以先对其进行排序,然后再判断?当然可以,但是会对其性能进行影响,当前数组已经是一个有序的了,再对其进行排序,就是浪费时间。

我这里先对其进行判断,假设其已经是一个有序的,如果出现不相等的项,再对其进行排序,重新从头开始判断。

结果
在这里插入图片描述

### C++ 判断数组是否能构成等差数列 在数学上,**等差数列**是指相邻两项之间的差值相等的序列。例如 `[1, 3, 5, 7]` 就是一个公差为 `2` 的等差数列。 要在 C++ 中判断一个给定的数组是否可以构造成等差数列,我们可以通过以下几个步骤: #### 算法思路: 1. **排序数组**:首先对输入的数组进行升序或降序排列。因为等差数列本身是有顺序性的,所以通过排序可以让元素按递增或递减的方式排列。 2. **计算公差**:从第一个和第二个元素开始,计算它们之间的差值作为“公差”。 3. **遍历并验证**:依次检查后续每一对相邻元素之间是否存在相同的公差。如果所有相邻元素间的差都等于初始的公差,则该数组可以形成等差数列;否则不可以。 下面是一段简单的 C++ 实现代码示例: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; bool canFormArithmeticSequence(vector<int>& nums) { // 如果数组长度小于等于2,默认认为是可以形成等差数列的 if (nums.size() <= 2) return true; // 对数组进行升序排序 sort(nums.begin(), nums.end()); int diff = nums[1] - nums[0]; // 计算前两个数字的差值 for (int i = 2; i < nums.size(); ++i) { // 检查每个连续元素之间的差异是否一致 if (nums[i] - nums[i-1] != diff) return false; } return true; } // 测试函数 void testCanFormArithmeticSequence() { vector<int> arr1 = {1, 4, 2, 6}; cout << "Arr1 是否能构成等差数列:" << boolalpha << canFormArithmeticSequence(arr1) << endl; vector<int> arr2 = {1, 3, 5, 7, 9}; cout << "Arr2 是否能构成等差数列:" << boolalpha << canFormArithmeticSequence(arr2) << endl; } ``` 在这段程序里,`canFormArithmeticSequence()` 函数接收一个整型向量,并返回布尔类型的真或假表示这个数组能不能成为等差数列。“测试”部分演示了如何使用此功能来进行实际数据点的检测。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值