Leetcode 2829. k-avoiding 数组的最小总和
给你两个整数 n 和 k 。
对于一个由 不同 正整数组成的数组,如果其中不存在任何求和等于 k 的不同元素对,则称其为 k-avoiding 数组。
返回长度为 n 的 k-avoiding 数组的可能的最小总和。
n 个不同正整数的最小总和,那就是从 1 到 n 的总和,但是还有一个要求就是不存在任何求和等于 k 的。因此接下来要删除掉这一部分数据。
从 1 开始判断,到 k / 2,删除和为 k 的最大的一个值,在加上一个 n 后的元素。
上述会有一个 bug,例如 n = 3, k =5 的情况,当判断 1 时,4 是不存在的,不用处理;当判断 2 时,删除 3,加一个 3 后面的数,也就是 4。此时又有 4 了,就会出现问题。
因此 ,从 k / 2 往 1 遍历,就不会出现判断时没有的元素,后来又被加上去的情况。因为判断会先删除小的,再删除大的。因此不会出现上述情况。
完整代码
class Solution {
public int minimumSum(int n, int k) {
int res = 0;
for (int i = 1; i <= n; i++) {
res += i;
}
int removeCount = 0;
for (int i = k / 2; i > 0; i--) {
int tmp = k - i;
if (tmp > (n + removeCount)) continue;
if (tmp == i) continue;
res -= tmp;
removeCount++;
res += n + removeCount;
}
return res;
}
}