TREC之使用terrier进行信息检索

本文档详细介绍了如何在Linux环境下,利用Terrier进行TREC信息检索实验,包括数据处理、索引建立、查询处理、相关性反馈和评估指标。实验涉及的数据集为json格式,查询集为xml,文档相关性判定文件为txt。实验步骤包括数据转换、索引初始化、批量查询和相关性反馈,使用了PL2等评分排序策略,并通过nDCG、p、bpref、MAP等评价指标评估结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、相关链接

下面链接这是我们当时找的资料,对我们的整体实验有着比较大的帮助,可以先看进行理解。看懂了,ok,再看看我们这篇文章吧;看不懂,没事,还有我们这篇文章呢。
由于我们在使用terrier的时候找资料非常费劲,我们就想把我们的实验经验分享出来,同时也非常感谢各位给我们提供过帮助的朋友。我们尽量在文章中把每一步都讲出来,以及处理中的一些问题。
(链接)TREC Precision Medicine 使用Terrier进行信息检索_GouGe_CSDN的博客-CSDN博客
信息检索平台Terrier的使用_klaas的博客-CSDN博客
Terrier文档翻译:安装与运行_XiaoPANGXia的专栏-CSDN博客

2、实验要求的逐字逐句分析

看到这的同学应该都是面临一个实验吧(蜜汁微笑),我们先来看看2020的例子实验:
图1:实验要求
图1:实验要求

我们来把每一句话都来分析一下,看看这个实验到底在讲什么。

2.1 数据介绍:

包括了数据集(多个json)、查询集(xml)、文档相关性判定文件(txt),这三个文件都是需要的。

2.1.1 数据集:

路径“/cord-19_2020_07_16/document_parses/”下有两个json文件夹,其中包含多个json文件,打开任意一个,里面数据类型为dict类型。之后会对其进行处理。
数据集

图:数据集(局部)

2.1.2 查询集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值