1.什么是布隆过滤器?
由二进制向量(或者说位数组)和一系列随机映射函数(哈希函数)两部分组成的数据结构。相比于平时常用的的 List、Map 、Set 等数据结构,它占用空间更少并且效率更高,但是缺点是其返回的结果是概率性的,而不是非常准确的。理论情况下添加到集合中的元素越多,误报的可能性就越大。并且,存放在布隆过滤器的数据不容易删除。
2.布隆过滤器的原理
加入一个元素布隆过滤器中:
- 使用布隆过滤器中的哈希函数对元素值进行计算,得到哈希值(有几个哈希函数得到几个哈希值)。
- 根据得到的哈希值,在位数组中把对应下标的值置为 1。
判断一个元素是否存在于布隆过滤器中:
- 对给定元素再次进行相同的哈希计算;
- 得到值之后判断位数组中的每个元素是否都为 1,如果值都为 1,那么说明这个值在布隆过滤器中,如果存在一个值不为 1,说明该元素不在布隆过滤器中。
3.布隆过滤器使用场景
判断给定数据是否存在
:比如判断一个数字是否在于包含大量数字的数字集中(数字集很大,5亿以上)、 防止缓存穿透(判断请求的数据是否有效避免直接绕过缓存请求数据库)、邮箱的垃圾邮件过滤、黑名单功能等等。去重
:爬给定网址的时候对已经爬取过的 URL 去重。
4.Java实现布隆过滤器
import java.util.BitSet;
public class MyBloomFilter {
//位数组大小
private static final int DEFAULT_SIZE = 2 << 24;
//通过这个数组创建多个hash函数
private static final int[] seeds = new int[]{ 6, 18, 64, 89, 126, 189, 223};
//初始化位数组
private BitSet bits = new BitSet(DEFAULT_SIZE);
//hash函数数组
private MyHash[] myHashes = new MyHash[seeds.length];
//初始化seed.length个hash函数
public MyBloomFilter(){
for (int i = 0; i < seeds.length; i++) {
myHashes[i] = new MyHash(DEFAULT_SIZE, seeds[i]);
}
}
//添加元素到位数组
public void add(Object obj){
for (MyHash myHash : myHashes) {
bits.set(myHash.hash(obj), true);
}
}
//判断元素是否存在于位数组
public boolean contains(Object obj){
boolean result = true;
for (MyHash myHash : myHashes) {
result = result && bits.get(myHash.hash(obj));
}
return result;
}
//自定义hash函数
public static class MyHash{
private int cap;
private int seed;
public MyHash(int cap, int seed){
this.cap = cap;
this.seed = seed;
}
//计算hash值
public int hash(Object obj){
return (obj == null) ? 0:Math.abs(seed*(cap - 1) & ((obj.hashCode()) ^ (obj.hashCode() >>> 16)));
}
}
}