一、198.打家劫舍
代码如下:
class Solution {
public:
int rob(vector<int>& nums) {
if (nums.size() == 0) return 0;
if (nums.size() == 1) return nums[0]; // 这两行不加会报错,少上一行会建不了dp数组,少这一行会不能对dp[1]操作
vector<int> dp(nums.size(), 0); // dp数组含义:考虑范围i以内能偷到的最大金额
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);
for (int i = 2; i < nums.size(); i++) {
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[nums.size() - 1];
}
};
如果不加两行if,会出现报错。
若没有if (nums.size() == 0) return 0;
,则当nums.size()=0时无法创建dp数组;
若没有if (nums.size() == 1) return nums[0]
,则当nums.size()=1时无法对dp[1]进行操作。
二、213.打家劫舍II
在打家劫舍I的基础上考虑两种情况:
1)不考虑首元素的最大价值;
2)不考虑尾元素的最大价值。
(同时不考虑首元素和尾元素的最大价值已经包含在两种情况中)
创建函数的细节要注意i是从start+2开始,到end结束(类比打家劫舍I)
for (int i = start + 2; i <= end; i++) {
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
代码如下:
class Solution {
public:
int robRange(vector<int>& nums, int start, int end) {
if (end == start) return nums[start];
vector<int> dp(nums.size(), 0);
dp[start] = nums[start];
dp[start + 1] = max(nums[start], nums[start + 1]);
for (int i = start + 2; i <= end; i++) {
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[end];
}
int rob(vector<int>& nums) {
if (nums.size() == 0) return 0;
if (nums.size() == 1) return nums[0];
int result1 = robRange(nums, 0, nums.size() - 2); // 考虑第一个元素到倒数第二个元素
int result2 = robRange(nums, 1, nums.size() - 1); // 考虑第二个元素到倒数第一个元素
return max(result1, result2);
}
};
三、337.打家劫舍III
整体思路:
考察当前节点能取到的最大价值有两部分组成:
1)偷当前节点,能获得的最大价值为:当前节点的价值+不偷左节点的最大价值+不偷右节点的最大价值;
2)不偷当前节点,能获得的最大价值为:偷或不偷左节点的最大价值+偷或不偷右节点的最大价值。(为什么是偷或不偷?因为只是增加了考虑范围,考虑是否偷左/右节点)
最终根节点处,这两部分的价值取最大值。
每个节点返回的是dp数组,dp数组中含有两个元素:
dp[0]=不偷当前节点获得的最大价值、dp[1]偷当前节点获得的最大价值。
代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> robTree(TreeNode* cur) {
if (cur == NULL) return vector<int>{0, 0}; // {偷cur, 不偷cur}
vector<int> leftdp = robTree(cur->left);
vector<int> rightdp = robTree(cur->right);
// 不偷当前的cur,能获得的最大价值为:偷或不偷左节点的最大价值+偷或不偷右节点的最大价值
int val1 = max(leftdp[0], leftdp[1]) + max(rightdp[0], rightdp[1]);
// 偷当前的cur,能获得的最大价值为:cur-val+不偷左节点的最大价值+不偷右节点的最大价值
int val2 = cur->val + leftdp[0] + rightdp[0];
return {val1, val2};
}
int rob(TreeNode* root) {
vector<int> result = robTree(root);
return max(result[0], result[1]); // 返回的是偷或不偷根节点的最大价值
}
};