Transformer + SD解析与实战——Datawhale AI视频生成学习2

本文详细介绍了Transformer+SD在DatawhaleAI中用于视频生成的技术路径,涉及GAN、VQGAN、Diffusion模型以及TransformerBlock的实现。文章还讨论了图像生成的四个阶段,手写LLM的Attention机制,以及UViT和DiT之间的区别。最后,提及了ModelScope平台的使用方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Transformer + SD解析与实战——Datawhale AI视频生成学习2

文生图技术路径

图像生成的四个阶段

在这里插入图片描述

Gan-based

GAN在人脸上比较好,但是不稳定,模式坍塌,窄分布的效果很好(人脸、人体)。对于自然分布的领域很好。

在这里插入图片描述

VQGAN

VQ-GAN是自回归方式,视频生成

在这里插入图片描述

Diffusion

在这里插入图片描述

基于transformer的diffusion

输入是一张256x256像素的图像,具有3个颜色通道(RGB)。图像通过编码器(Encoder)处理,生成一个压缩后的表示形式,称为latent表示,其空间维度被压缩为32x32x4。latent space的维度为32x32x4的向量。将latent space的每个token化,即用patchify方法,将label和timestep拼接上embedding。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

主流训练步骤

在这里插入图片描述

ModelScope

modelscope scepter万能图片生成工作台

可以直接用它们的低代码平台做推理

页面体验:https://modelscope.cn/studios/iic/scepter_studio/summary

也可以在“我的Notebook"里面创建笔记本,然后输入下面两行代码做一下训练端的

pip install scepter
python -m scepter.tools.webui --language zh

视频生成发展

脱离了4s的发展

在这里插入图片描述

手写LLM

Attention

在这里插入图片描述

第一行: h t h_t ht是target, h s h_s hs是source

Self-Attention

对于encoder和decoder的不同attention,处理的方式可能会不一样。对于encoder来说,不需要mask,可以看到所有的token,而Decoder是自回归,需要mask。

multi-head: attention可以分成多个,不同的注意力可以注意到不同的地方。

在这里插入图片描述

Llama结构图

在这里插入图片描述

TransformerBlock

class TransformerBlock:
    def __init__(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值