基于协同过滤算法的个性化新闻推荐系统的设计与实现
简介:基于协同过滤算法的个性化新闻推荐系统,使用了基于用户的协同过滤推荐算法,根据评分数据计算推荐,同时还使用了新用户喜好标签进行混合推荐,及将两种推荐结果全部输出,解决了冷启动和数据稀疏性问题。同时采用基于统计的热点推荐和相关推荐等。
Java语言SpringBoot和SSM(Spring+SpringMVC+Mybatis)两种框架分别开发实现+Mysql+爬虫,基于用户的协同过滤算法个性化新闻推荐系统,采用基于用户、项目、内容、聚类、混合的协同过滤推荐算法。
项目在线演示地址:
(推荐用谷歌浏览器服务器性能较差,访问有点慢):
前台演示地址:http://1.95.71.218:8090/WebNewsRecommendSystem/
后台演示地址: http://1.95.71.218:8090/WebNewsRecommendSystem/admin/login
第二个新闻推荐:前台演示地址: http://1.95.71.218:8081/NewsRecommendOnline/
第二个新闻推荐后台演示地址:http://1.95.71.218:8081/NewsRecommendOnline/admin/login
源码获取:点我头像进我主页在资源栏目下查找或者以下链接https://download.csdn.net/download/weixin_46115961/88582512
一、项目简介
项目创新点:
使用了基于用户的协同过滤推荐算法,根据评分数据计算推荐,同时还使用了新用户喜好标签进行混合推荐,及将两种推荐结果全部输出,解决了冷启动和数据稀疏性问题。同时采用基于统计的热点推荐和相关推荐等。
**冷启动:**一个新用户第一次登录,没有评分和收藏数据,那么没有办法进行个性化推荐;
**数据稀疏性:**会伴随项目的整个运行过程,比如:项目刚上线,新闻数据很多,但是用户及用户的评分、收藏数据较少,用户之间没有交集,那么有些用户就没有推荐结果
1、开发工具和实现技术
IDEA,jdk1.8,mysql5.5/mysql8,navicat数据库管理工具,tomcat7,爬虫,SpringBoot和SSM(spring+springmvc+mybatis)两种开发框架分别开发实现,javascript脚本,jquery脚本,bootstrap前端框架,layer弹窗组件,webuploader文件上传组件等。
2、项目功能
**前台用户包含:**注册、登录、注销、浏览新闻、搜索新闻、信息修改、密码修改、新闻评分、个人中心,新闻收藏、新闻评论、新闻浏览、用户喜好标签、热点推荐、个性化推荐新闻等功能;
**后台管理员包含:**数据统计、用户管理、新闻管理、新闻类型管理、评分管理、收藏管理、评论管理、用户喜好标签管理、浏览记录管理等。
个性化推荐功能:
**游客:**展示热点推荐(根据新闻被收藏数量降序推荐)
**登录用户:**同时进行 基于用户的协同过滤推荐算法进行推荐(根据评分数据)和 基于喜好标签的推荐(根据登录用户的喜好标签随机推荐)
系统功能展示
1,前台用户系统
2,后台管理系统
3,协同过滤推荐算法展示
爬虫实时更新新闻数据
源码获取:点我头像进我主页在资源栏目下查找或者以下链接https://download.csdn.net/download/weixin_46115961/88582512