【Python数据分析】电商交易数据分析

本文通过分析电商交易数据,了解业务场景,进行数据清洗和初步分析。主要涉及订单重复值检查、数值异常处理、缺失值填充、日期类型转换、数据切片与分组等操作。分析了商品销量、销售额、城市分布、价格区间、渠道占比、支付时间及月成交额等关键指标,旨在提升数据分析能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分析目的:
通过分析一份电商交易数据, 熟悉电商的常见的业务场景, 分析维度和指标, 为以后从事相关工作积累经验

  1. 加载数据, 使用 head 方法查看前5条数据, 初步浏览数据基本内容。

在这里插入图片描述
2. 加载数据后, 先使用 describe 和 info 方法看下数据的大概分布情况。可以得到数据的一些描述性统计值,如每一列的条数、均值、最大值、最小值等等,还发现一些列的数据问题,比如productId最小值为0、payMoney最小值是负数、channelId有缺失值、为了方便后续分析,createTime和payTime还需要进行数据类型转换。

在这里插入图片描述
3. 开始进行数据清洗
#order_id,因为订单号是唯一的,所以要看看有无重复值,并删除,再回头看一下。

df[df['orderId'].duplicated()]
df.drop(df[df['orderId'].duplicated()].index,inplace=True)
df[df['orderId'].duplicated()] # 查看一下

#userId,因为一个用户可能有多个订单,所以userId可能存在重复值是合理的。

#productId,同理一个商品出现在多个订单中也是合理的,所以有重复值是正常的,但是商品id一般不为0,所以需要查看一下相应记录。发现存在不少,删除处理。

df[df['productId']==0]
df.drop(df[df.productId==
### Python 数据分析电商项目的应用 #### 使用Python进行电商项目数据分析的重要性 电子商务平台积累了大量的用户行为数据,这些数据包含了用户的浏览、点击和购买历史。通过对这些数据的深入挖掘,能够帮助商家更好地理解客户需求并优化营销策略。 #### 示例:电商平台用户行为数据分析与推荐系统 为了实现这一目标,可以采用机器学习中的`K-means`聚类算法对用户行为模式进行分类。下面是一个简单的例子: ```python pip install scikit-learn pandas matplotlib seaborn pyecharts ``` 加载必要的库之后,模拟一组用户行为数据,并利用`scikit-learn`包内的`KMeans`模块执行聚类操作: ```python from sklearn.cluster import KMeans import numpy as np import pandas as pd # 创建DataFrame存储用户行为数据 data = { 'browse_time': [10, 15, 20, 5, 30], 'purchase_frequency': [1, 2, 5, 0, 8] } df_user_behavior = pd.DataFrame(data) # 将DataFrame转换成NumPy数组用于训练模型 user_behavior_array = df_user_behavior.values # 初始化KMeans对象并指定簇的数量为2 kmeans_model = KMeans(n_clusters=2).fit(user_behavior_array) # 获取每个样本所属类别标签 cluster_labels = kmeans_model.labels_ print("用户聚类标签:", cluster_labels) ``` 这段代码展示了如何安装所需的软件包以及构建一个基础的数据框架来表示不同用户的活动水平[^1]。 对于更复杂的应用场景,则可能涉及到更大规模的真实世界数据集处理。此时除了上述方法外还可以借助于`pandas`来进行高效的数据清洗与预处理工作;而像`pyecharts`这样的工具则非常适合用来制作交互式的图表以便直观呈现分析成果[^2]。 另外,在实际业务环境中往往还需要考虑更多维度的信息比如商品种类偏好度等,这可以通过关联规则挖掘等方式进一步扩展研究范围。同时也可以结合时间序列预测技术评估未来趋势变化从而指导库存管理和促销计划制定等工作[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值