第八章 附加主题 fbprohet

文章介绍了在Python中不应该使用pickle保存Prophet模型,因为Stan后端不支持。推荐使用内置的序列化函数将模型序列化为json文件,以实现跨系统移植和向后兼容。此外,讨论了扁平化趋势在处理季节性模式时的用途,以及如何通过修改源代码实现自定义趋势。文章还展示了如何通过热启动加快模型拟合速度,尤其是在添加少量新数据时,但需要注意数据变化大或变化点数量不一致时热启动可能不适用。
摘要由CSDN通过智能技术生成

保存模型

在 Python 中,不应使用 pickle 保存模型;附加到模型对象的 Stan 后端不会很好地进行腌制,并且会在某些 Python 版本下产生问题。相反,您应该使用内置的序列化函数将模型序列化为 json:

Python

import json
from prophet.serialize import model_to_json, model_from_json
with open(‘serialized_model.json’, ‘w’) as fout:
json.dump(model_to_json(m), fout) # Save model
with open(‘serialized_model.json’, ‘r’) as fin:
m = model_from_json(json.load(fin)) # Load model

json 文件将可跨系统移植,反序列化向后兼容旧版本的先知。

扁平化趋势和自定义趋势
对于表现出强烈季节性模式而非趋势变化的时间序列,强制趋势增长率持平可能很有用。这可以通过growth=flat在创建模型时简单地传递来实现:

Python

m = Prophet(growth=‘flat’)
请注意,如果将其用于没有恒定趋势的时间序列,则任何趋势都将与噪声项相符,因此预测中将存在高预测不确定性。
除了这三个内置趋势函数(分段线性、分段逻辑增长和平坦)之外,要使用趋势,您可以从github下载源代码,在本地分支中根据需要修改趋势函数,然后安装该本地版本. 这个 PR很好地说明了实现自定义趋势必须要做的事情,这个实现了阶梯函数趋势和这个实现了 R 中的新趋势。
更新拟合模型
预测的一个常见设置是拟合需要随着额外数据进入而更新的模型。Prophet 模型只能拟合一次,并且在新数据可用时必须重新拟合新模型。在大多数情况下,模型拟合足够快,从头开始重新拟合不会有任何问题。但是,可以通过从早期模型的模型参数热启动拟合来稍微加快速度。此代码示例显示了如何在 Python 中完成此操作:

Python

def stan_init(m):
“”"Retrieve parameters from a trained model.

Retrieve parameters from a trained model in the format
used to initialize a new Stan model.

Parameters
----------
m: A trained model of the Prophet class.

Returns
-------
A Dictionary containing retrieved parameters of m.

"""
res = {}
for pname in ['k', 'm', 'sigma_obs']:
    res[pname] = m.params[pname][0][0]
for pname in ['delta', 'beta']:
    res[pname] = m.params[pname][0]
return res

df = pd.read_csv(‘…/examples/example_wp_log_peyton_manning.csv’)
df1 = df.loc[df[‘ds’] < ‘2016-01-19’, :] # All data except the last day
m1 = Prophet().fit(df1) # A model fit to all data except the last day
%timeit m2 = Prophet().fit(df) # Adding the last day, fitting from scratch
%timeit m2 = Prophet().fit(df, init=stan_init(m1)) # Adding the last day, warm-starting from m1

可以看出,来自先前模型的参数通过 kwarg 传递给下一个模型的拟合init。在这种情况下,模型拟合在使用热启动时快了大约 5 倍。加速通常取决于最佳模型参数随着新数据的添加而改变了多少。
在考虑热启动时,应牢记一些注意事项。首先,热启动可能适用于数据的小更新(例如在上面的示例中添加一天),但如果数据发生较大变化(即很多天有已添加)。这是因为当添加了大量的历史时,两个模型之间的变化点的位置会有很大的不同,因此之前模型的参数实际上可能会产生不好的趋势初始化。其次,作为一个细节,从一个模型到另一个模型,变化点的数量需要保持一致,否则会因为变化点先验参数delta的大小错误而引发错误。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值