自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(48)
  • 收藏
  • 关注

原创 Hugging Face 使用指南——并行智算云(10s上手版)

红框部分出现就是正确了。

2024-10-28 21:07:52 167

原创 Hugging Face 使用指南——并行智算云

huggingface-cli 是 huggingface_hub 包的一部分。安装完成后,您或许仍然不能使用 huggingface-cli 命令来下载模型和数据集等操作。#TODO。

2024-10-28 14:53:00 1009

原创 本地时间与时区时间转化(以Helpdesk和BPI Challenge 2012为例)

描述问题:此数据时间戳列数据格式为datatime64[ns.UITC],,最后的+00:00是时区时间,所以格式为本地时间+时区时间,之前使用的代码无法将其转化为object。数据来源:https://data.4tu.nl/datasets/94ee26c8-78f6-4387-b32b-f028f2103a2c/1。数据来源:https://data.4tu.nl/datasets/533f66a4-8911-4ac7-8612-1235d65d1f37/1。数据集:Helpdesk。

2024-10-22 10:23:35 214

原创 nn.functional.softmax(X, dim=-1)

dim表示在该维度应用Softmax函数,将值标准化为概率分布。

2024-10-09 21:17:07 342

原创 PyTorch中None的使用

None 的使用允许我们在进行比较时,确保每个张量的形状正确,以便利用广播功能进行逐元素的比较操作。通过插入新维度,我们可以很方便地处理不同形状的张量,而不需要手动扩展或改变它们的大小。

2024-10-09 21:11:44 395

原创 PyTorch 中 reshape 函数用法示例

reshape 是用于改变张量形状的工具,数据不变。可以使用 -1 进行自动推导。适用于多维张量的重塑,便于后续的数据处理和建模。

2024-10-09 20:58:25 331

原创 安装cudnn时,没有nvidia公钥

安装cudnn时,没有nvidia公钥。

2024-01-02 21:31:30 524

原创 《算法笔记》7.3小节——数据结构专题(1)->链表处理->问题 E: 算法2-24 单链表反转

输入包括多组测试数据,每组测试数据占一行,第一个为大于等于0的整数n,表示该单链表的长度,后面跟着n个整数,表示链表的每一个元素。针对每组测试数据,输出包括两行,分别是反转前和反转后的链表元素,用空格隔开。例如:原单链表为 2 3 4 5 ,反转之后为5 4 3 2。如果链表为空,则只输出一行,list is empty。根据一个整数序列构造一个单链表,然后将其反转。

2023-04-19 22:10:45 145

原创 《算法笔记》7.3小节——数据结构专题(1)->链表处理->问题 B: C语言-链表排序

第一行,a、b两个链表元素的数量N、M,用空格隔开。接下来N行是a的数据 然后M行是b的数据 每行数据由学号和成绩两部分组成。已有a、b两个链表,每个链表中的结点包括学号、成绩。要求把两个链表合并,按学号升序排列。按照学号升序排列的数据。

2023-04-19 18:03:47 164

原创 《算法笔记》6.1小节——C++标准模板库(STL)介绍->vector的常见用法详解->问题 B: Student List for Course (25)

【代码】《算法笔记》6.1小节——C++标准模板库(STL)介绍->vector的常见用法详解->问题 B: Student List for Course (25)

2023-04-14 23:26:31 166

原创 《算法笔记》6.1小节——C++标准模板库(STL)介绍->vector的常见用法详解->问题 A: Course List for Student (25)

【代码】《算法笔记》6.1小节——C++标准模板库(STL)介绍->vector的常见用法详解->问题 A: Course List for Student (25)

2023-04-14 22:36:23 79

原创 《算法笔记》4.2小节——算法初步->哈希->问题 B: 分组统计

输入第一行表示样例数m,对于每个样例,第一行为数的个数n,接下来两行分别有n个数,第一行有n个数,第二行的n个数分别对应上一行每个数的分组,n不超过100。先输入一组数,然后输入其分组,按照分组统计出现次数并输出,参见样例。输出m行,格式参见样例,按从小到大排。

2023-04-13 23:03:44 240

原创 《算法笔记》3.4小节——入门模拟->日期处理->问题 A: 日期差值

有两个日期,求两个日期之间的天数,如果两个日期是连续的我们规定他们之间的天数为两天。有多组数据,每组数据有两行,分别表示两个日期,形式为YYYYMMDD。每组数据输出一行,即日期差值。

2023-04-12 15:49:16 72

原创 《算法笔记》3.2小节——入门模拟->查找元素->问题 E: 学生查询

测试数据有多组,第一行为样例数m。对于每个样例,第一行为学生人数n(n不超过20),加下来n行每行4个整数分别表示学号、姓名、性别和年龄,最后一行表示查询的学号。输入n个学生的信息,每行包括学号、姓名、性别和年龄,每一个属性使用空格分开。最后再输入一学号,将该学号对应的学生信息输出。输出m行,每行表示查询的学生信息,格式参见样例。

2023-04-11 18:15:14 65

原创 《算法笔记》3.2小节——入门模拟->查找元素->问题 C: 查找学生信息

如果没有对应的学生信息,则输出“No Answer!输入的第一行为N,即学生的个数(N<=1000)输出M行,每行包括一个对应于查询的学生的信息。输入N个学生的信息,然后进行查询。01 李江 男 21。02 刘唐 男 23。03 张军 男 19。04 王娜 女 19。

2023-04-11 17:53:14 66

原创 《算法笔记》3.1小节——入门模拟->简单模拟->问题 I: 锤子剪刀布 (20)

输入第1行给出正整数N(<=105),即双方交锋的次数。随后N行,每行给出一次交锋的信息,即甲、乙双方同时给出的的手势。C代表“锤子”、J代表“剪刀”、B代表“布”,第1个字母代表甲方,第2个代表乙方,中间有1个空格。输出第1、2行分别给出甲、乙的胜、平、负次数,数字间以1个空格分隔。第3行给出两个字母,分别代表甲、乙获胜次数最多的手势,中间有1个空格。如果解不唯一,则输出按字母序最小的解。现给出两人的交锋记录,请统计双方的胜、平、负次数,并且给出双方分别出什么手势的胜算最大。

2023-04-11 15:40:19 71

原创 《算法笔记》3.1小节——入门模拟->简单模拟->问题 F: A+B和C (15)

对每组测试用例,在一行中输出“Case #X: true”如果A+B>C,否则输出“Case #X: false”,其中X是测试用例的编号(从1开始)。输入第1行给出正整数T(<=10),是测试用例的个数。随后给出T组测试用例,每组占一行,顺序给出A、B和C。给定区间[-231, 231]内的3个整数A、B和C,请判断A+B是否大于C。

2023-04-08 21:48:23 71

原创 《算法笔记》3.1小节——入门模拟->简单模拟->问题 B: A+B

给定两个整数A和B,其表示形式是:从个位开始,每三位数用逗号","隔开。输入包含多组数据数据,每组数据占一行,由两个整数A和B组成(-10。请计算A+B的结果,并以正常形式输出,每组数据占一行。现在请计算A+B的结果,并以正常形式输出。

2023-04-08 16:23:42 113

原创 问题 A: 剩下的树

有一个长度为整数L(1<=L<=10000)的马路,可以想象成数轴上长度为L的一个线段,起点是坐标原点,在每个整数坐标点有一棵树,即在0,1,2,…,L共L+1个位置上有L+1棵树。现在要移走一些树,移走的树的区间用一对数字表示,如 100 200表示移走从100到200之间(包括端点)所有的树。可能有M(1<=M<=100)个区间,区间之间可能有重叠。可能有多组输入数据,对于每组输入数据,输出一个数,表示移走所有区间的树之后剩下的树的个数。两个整数L(1<=L<=10000)和M(1<=M<=100)。

2023-04-08 11:00:28 56

原创 问题 E: C语言11.8

有10个学生,每个学生的数据包括学号、姓名、3门课程的成绩。读入这10个学生的数据,要求输出3门课程的总平均成绩,以及个人平均分最高的学生的数据(包括学号、姓名、3门课程成绩、平均分数)。共有10行,每行包含了一个学生的学号(整数)、名字(长度不超过19的无空格字符串)和3门课程的成绩(0至100之间的整数),用空格隔开。如果有多位个人平均分最高的学生,输出按照输入顺序第一个最高分的学生数据。第一行包含了3个实数,分别表示3门课程的总平均成绩,保留2位小数,每个数之后输出一个空格。请注意行尾输出换行。

2023-04-07 18:24:43 75

原创 问题 D: C语言11.7

编写两个函数input和print,分别用来输入5个学生的数据记录和打印这5个学生的记录。对于每一个学生,其记录包含了学号、名字、3门课程的成绩共5项。用主函数分别调用input和print函数进行输入和输出。共有5行,每行包含了一个学生的学号(整数)、名字(长度不超过19的无空格字符串)和3门课程的成绩(0至100之间的整数),用空格隔开。要求使用结构体数组实现,结构体中包括了每个学生的5项记录。与输入格式相同,每行输出一个学生的所有记录。请注意行尾输出换行。

2023-04-07 17:38:35 163

原创 问题 B: C语言11.2

定义一个结构体student,存储学生的学号、名字、性别和年龄,读入每个学生的所有信息,保存在结构体中,并输出。以后的n行中,每一行包含对应学生的学号、名字、性别和年龄,用空格隔开。保证每一个人名都不包含空格且长度不超过15,性别用M和F两个字符来表示。第一行有一个整数n,表示以下有n个学生的信息将会输入。有n行,每行输出一个学生的学号、名字、性别和年龄,用空格隔开。本题要求使用指向结构体数组的指针进行输入和输出。请注意行尾输出换行。

2023-04-07 16:13:24 51

原创 问题 A: C语言11.1

完成一个对候选人得票的统计程序。假设有3个候选人,名字分别为Li,Zhang和Fun。使用结构体存储每一个候选人的名字和得票数。记录每一张选票的得票人名,输出每个候选人最终的得票数。有三行,分别为Li,Zhang和Fun每人的得票数。格式为首先输出人名,其后输出一个冒号,最后输出候选人的得票数。以后的n行中,每一行包含一个人名,为选票的得票人。保证每一个人名都是Li,Zhang和Fun中的某一个。第一行有一个整数n,表示以下有n张选票信息将会输入。保证n不大于100。请注意行尾输出换行。

2023-04-07 09:52:43 165

原创 问题 D: C语言10.15

输入3个字符串,按从小到大的顺序输出。要求使用指针的方法进行处理。3行,每行一个用字符串。保证每个字符串的长度不超过20。按从小到大的顺序输出这3个字符串,每个字符串一行。请注意行尾输出换行。

2023-04-06 15:27:37 129

原创 问题 B: C语言10.2

输入a、b、c三个整数,按先大后小的顺序输出a、b和c。注意请使用指针变量的方式进行比较和输出。按先大后小的顺序输出a、b和c,用空格隔开。三个用空格隔开的整数a、b和c。请注意行尾输出换行。

2023-04-06 14:50:00 351

原创 问题 J: 例题6-9 字符串求最大值

从键盘上输入3个字符串,求出其中最大者。输入3行,每行均为一个字符串。一行,输入三个字符串中最大者。

2023-04-06 11:17:13 455

原创 问题 E: 习题6-13 字符串比较

例如:“A"与"C"相比,由于"A”<“C”,应输出负数,同时由于"A"与"C"的ASCII码差值为2,因此应输出"-2"。比较两个字符串s1和s2的大小,如果s1>s2,则输出一个正数;若s1=s2,则输出0;若s1<s2,则输出一个负数。同理:"And"和"Aid"比较,根据第2个字符比较的结果,“n"比"i"大5,因此应该输出"5”要求:不用strcpy函数;两个字符串用gets函数读入。一个整数,表示这两个字符串 比较的差值,单独占一行。

2023-04-05 22:52:37 55

原创 问题 D: 习题6-12 解密

即第一个字母变成第26个字母,第i个字母变成第(26-i+1)个字母,非字母字符不变。要求根据密码译回原文,并输出。

2023-04-05 18:07:41 56

原创 手把手教windows10/linux ssh免密登录

手把手windows10 ssh免密登录linux

2022-04-09 16:47:09 3056 1

原创 Python图像处理 PIL中convert(‘L‘)函数原理

img = img.convert()PIL有九种不同模式: 1,L,P,RGB,RGBA,CMYK,YCbCr,I,F1.img.convert(‘1’)为二值图像,非黑即白。每个像素用8个bit表示,0表示黑,255表示白。image = Image.open("./00000001_000.png")image_1 = image.convert('1')print(image_1)fig = plt.figure()ax = fig.subplots(1,2)ax[0].imsho

2022-04-03 16:24:02 4396

原创 BCELoss和BCEWithLogitsLoss的区别

BCELoss和BCEWithLogitsLoss要求的input都是经过sigmoid产生的分类概率,target是0或1的二分类。假设我们有一个3×3的输入,也就是batch_size是3,target是3×3,表示有3个标签。现在用这个例子做一个演示:import torchimport torch.nn as nnm = nn.Sigmoid()loss1 = nn.BCELoss()loss2 = nn.BCEWithLogitsLoss()input = torch.randn

2022-01-06 20:40:41 733

原创 Weakly Supervised Deep Learning for Thoracic DiseaseClassification and Localization on Chest X-rays

摘要胸部X光检查时临床上最常见和最实惠的放射检查之一。虽然在胸部X线上检测胸部疾病仍然是一项具有挑战性的任务,但由于1)不同胸部疾病患者的X涉嫌上病变区域出现的高度不同,以及2)放射科医生缺乏准确的像素级注释来进行模型训练。现有的机器学习方法无法应对胸部疾病通常发生在局部疾病专用区地 挑战。在这篇文章中,我们提出了一种弱监督深度学习框架,该框架配备了挤压和激励块、多地图传输和最大-最小合并,用于胸腔疾病的分类和可疑病变区域的定位。在chestX-ray14数据集上进行了全面的实验和讨论。数值和可视化结果都

2022-01-03 16:46:31 1508

原创 Weighing Features of Lung and Heart Regions forThoracic Disease Classification

摘要背景:胸部X射线是筛查胸部疾病最常见和最经济的放射学检查。根据胸片筛查领域的知识,病理信息通常集中在肺和心脏区域。然而,在实践中获取区域级标注代价较高,模型训练主要依赖弱监督的图像级分类标签,这对计算机辅助胸部X射线筛查是一个很大的挑战。为了解决这个问题,最近提出了一些方法来识别包含病理信息的局部区域,这对胸部疾病的分类是至关重要的。受此启发,我们提出了一种新的深度学习框架来探索肺和心脏区域的区别信息。结果:我们设计了一个带有多尺度注意模块的特征提取器,用于从全局图像中学习全局注意图,为了有效地利用

2021-12-26 15:27:41 1912

原创 Thorax Disease Classification with Attention Guided Convolutional Neural Network(未)

文献笔记

2021-12-04 17:54:51 2981

原创 Multiobjective Evolutionary Design of Deep Convolutional Neural Networks for Image Classification(未)

摘要卷积神经网络(CNN)是许多视觉任务深度学习模式的支柱。CNN体系结构的早期发展主要由人类专业知识和精心设计的过程驱动。最近,神经结构搜索被提出,其目的是使网络设计过程自动化并生成于任务相关的结构。虽然现有的方法在图像分类方面取得了由竞争力的性能,但由于以下两个原因,它们不太适合计算预算有限的问题:1)获得的体系结构要么仅针对分类性能进行优化,要么仅针对一种部署场景进行优化;2)在大多数方法中,搜索过程需要大量计算资源。为了克服这些局限性,我们提出一种进化算法,用于在分类性能和浮点运算等多个目标下搜索

2021-12-03 21:59:20 2194

原创 Discriminative Feature Learning for Thorax Disease Classification in Chest X-ray Images(待补充)

摘要本文主要研究胸部X射线(CXR)图像中的胸部疾病分类问题。不同于通用图像分类任务,一个鲁棒且稳定的CXR图像分析系统应该考虑CXR图像的独特特征。特别是,他应该能够:1)自动关注疾病关键区域,这些区域通常规模较小;2)自适应地捕获不同疾病特征之间的内在关系,并利用它们共同共同提高多标签疾病识别率。在本文中,我们提出一个名为ConsultNet的两分支结构来学习区分特征,以同时实现这两个目的。ConsultNet由两部分组成。首先,信息瓶颈约束特征选择器( information bottleneck

2021-12-03 19:22:11 173

原创 A New Surrogate Loss andEmpirical Studies on Medical Image Classification(待补充)

摘要深度AUC最大化(DAM)是一种通过最大化数据集上模型的AUC分数来学习深度神经网络的新范式。以往关于AUC最大化的研究大多集中在通过设计有效的随机算法进行优化的角度,而对于大型DAM在困难任务下的泛化性能的研究则较少。在这项工作中,我们的目标是使DAM在有趣的实际应用(医学图像分类)中更加实用。首先我们为AUC分数提出了一个新的基于边界(margin)最小最大代理损失函数(简称AUC最小-最大边界损失或简称AUC边界损失)。它比常用的AUC平方损失更具鲁棒性,同时在大规模随机优化方面也具有相同的优势

2021-12-03 18:46:20 2990

原创 json.dumps()及indent参数

json.dumps() 使字典类型漂亮的输出indent参数决定添加几个空格cla_dict = {“0”: “daisy”, “1”: “dandelion”, “2”: “roses”, “3”: “sunflowers”, “4”: “tulips”}cla_dict{‘0’: ‘daisy’, ‘1’: ‘dandelion’, ‘2’: ‘roses’, ‘3’: ‘sunflowers’, ‘4’: ‘tulips’}import jsonprint(json.dum

2021-11-04 19:44:59 12207

原创 kaggle模块安装失败

问题:使用kaggle API从kaggle下在数据集,在执行pip install kaggle出错。ERROR: Cannot uninstall 'certifi'. It is a distutils installed project and thus we cannot accura which files belong to it which would lead to only a partial uninstall.或者是执行kaggle API 下载命令时出错。kaggle

2021-10-31 17:10:02 1584

原创 LeNet-5网络简单理解(待补充)

LeNet-5网络LeNet-5网络结构LeNet是一种典型的卷积神经网络的结构,由YannLeCun发明。LeNet-5阐述了图像中像素特征之间的相关性能够由参数共享的卷积操作所取,同时使用卷积、下采样(池化)和非线性映射这样的组合结构,是当前流行的大多数深度图像识别网络的基础。输入层:32×32的手写字体图片,相当于32×32=1024个神经元。图片内容包含字0~9十个数字,也就是相当于10个类别的图片。LeNet-5一共包含7层(输入层不作为网络结构),分别由3个卷积层、2个下采样层、1

2021-07-19 16:57:18 430

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除