基于通道注意机制联合多尺度卷积神经网络的滚动轴承故障诊断

本文提出一种基于多尺度卷积神经网络的滚动轴承故障诊断方法。利用凯斯西储大学的SKF型轴承数据集,通过多尺度特征提取及通道注意力机制增强故障特征,实现高精度的故障分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数据来源

实验数据采用的是美国凯斯西储大学(CWRU)轴承数据中心的SKF型轴承的DE驱动端加速度数据,其中选用采样频率为48kHz,载荷为1hp的加速度数据进行实验分析,根据损伤部位的不同,分为滚动体、内圈、外圈六点钟方向故障,故样本共有10类。其次,对所选择的数据进行划分,首先根据转速以及采样频率确定每类样本的长度为1024个数据点,对数据进行分段处理构建数据集;然后选择80%的样本数据作为训练集,20%的样本数据作为测试集;最后对数据进行均值和标准差的数据标准化处理。具体信息如下:
在这里插入图片描述

二、模型结构

所提出的模型总体结构如下图所示,整个模型可分为多尺度特征提取、多尺度特征融合和故障分类三部分。多尺度特征采用的是三个网络分支对数据进行不同尺度的特征提取,由于传统的卷积运算忽略了不同通道特征对判断预测结果的重要程度,故在网络分支最后一层引入了通道注意力机制模块(ECA),对不同滤波器学习到的特征进行自适应的赋予不同的权重,增强与故障信息相关的特征,抑制无效的特征,提高网络性能,通道注意块的框架如图所示。然后融合每个网络分支通过学习获得不同尺度的特征,最后通过全连接层进行分类。
模型结构
ECA结构

三、实验验证

使用构建的数据集对模型进行验证,训练过程中的准确率曲线和损失函数曲线如下图所示,从整个训练阶段可以看到,准确率曲线没有明显的波动现象,随着迭代次数的增加,数值趋于平稳;损失率曲线快速下降,在迭代次数10次以后,损失值接近于0。从准确率曲线和损失函数曲线可以看出,明显训练效果良好,没有存在过拟合的情况。
在这里插入图片描述
为更进一步考察模型对故障的识别和故障误判情况,引入了混淆矩阵对故障诊断结果进行详细的量化分析。从混淆矩阵可以看到只有部分样本识别错误,大部分样本还是完全的被识别出来。综合来看,模型对滚动轴承故障具有优越的识别能力和较高的诊断准确率。
在这里插入图片描述

四、可视化分析

为了更直观地了解数据在模型中分布变化过程,加深对多尺度卷积神经网络故障诊断的理解,采用t-SEN方法对轴承健康状态分类的整个过程进行可视化。模型学习的特征分布如下图所示。图 (a)为原始信号的分布,图 (b)、(c)、d)为网络各分支的特征分布,图 (e)为最终多尺度融合特征的分布和全连接层的特征分布。从可视化图中可以看出,不同类型信号的初始分布比较混乱,随着网络的深入,学习到的特征变得越来越可分割。融合后的多尺度特征使信号类别基本完全分离,证明了不同尺度特征的互补性,提高了网络诊断的可靠性,也证明了多尺度特征融合通道注意力机制思想的正确性。
在这里插入图片描述
代码和数据集:https://mbd.pub/o/bread/ZpWbm5hv

<think>好的,我需要帮助用户了解如何使用卷积神经网络(CNN)进行滚动轴承故障诊断的方法和实现案例。首先,我得回顾一下用户提供的参考资料,确保回答准确。 用户提到了两个引用:一个是基于Matlab的CNN和连续小波变换(CWT)的方法,另一个是使用Python的一维CNN进行二类的轴承故障诊断。这两个案例别涉及不同的工具(Matlab vs Python)和不同的数据处理方法(CWT处理为图像 vs 一维信号处理)。需要将这两者的方法结合起来,给出一个全面的回答。 首先,我需要明确滚动轴承故障诊断的一般流程。通常包括数据采集、预处理、特征提取、模型构建、训练与评估。CNN在这里主要用于自动特征提取和类。 接下来,根据引用[1],Matlab案例中使用了CWT将振动信号转换为时频图像,这可能是因为二维CNN在处理图像数据上有优势。而引用[2]中的Python案例使用一维CNN直接处理原始信号,这需要处理一维时序数据。 因此,在回答中需要区这两种不同的数据预处理方法,并说明各自的优缺点。例如,CWT转换能捕捉时频特征,但计算量较大;一维CNN直接处理信号,节省计算资源但可能需要更深的网络来提取特征。 然后,需要给出具体的实现步骤。对于基于CWT和二维CNN的方法,步骤可能包括数据采集、CWT转换生成图像、构建CNN模型(卷积层、池化层、全连接层等)、训练和测试。对于一维CNN的方法,步骤则是数据预处理(归一化、段)、构建一维卷积层、池化层、全连接层,然后进行类。 同时,用户可能需要知道如何选择适合自己情况的方法,比如数据量、计算资源、是否需要时频析等因素。此外,代码示例也是重要的,用户提供的引用中有Matlab和Python的案例,可能需要简要说明代码结构,但由于不能直接复制,应指导用户如何查找或构建这些代码。 还需要注意用户提到的“实现方法与案例”,因此要结合两个引用中的案例,说明不同实现方式的异同点。例如,引用[1]可能更侧重于图像处理,而引用[2]侧重于时序信号处理。 最后,生成的相关问题需要围绕这两个案例展开,可能涉及数据预处理方法比较、不同工具的实现差异、模型优化策略等。 现在需要检查是否有遗漏的步骤,比如数据增强、模型评估指标(如准确率、混淆矩阵)、交叉验证等。这些内容虽然用户没有直接提到,但在故障诊断中也很重要,可能需要简要提及。 另外,要确保回答符合系统级指令,特别是LaTeX格式的正确使用,例如变量用$...$,公式用$$...$$。例如,在提到小波变换时,可能需要写出公式,但用户提供的引用中没有具体公式,所以可能不需要,或者可以提及CWT的数学表达式。 最后,确保引用标识正确添加,例如在提到Matlab案例时添加[^1],在提到Python的一维CNN时添加[^2]。 总结,回答的结构应该包括方法概述、两种实现路径(CWT+2D CNN和1D CNN)、步骤详解、案例参考,以及相关问题。需要清晰点,使用中文,避免Markdown,保持口语化但专业。</think>### 卷积神经网络滚动轴承故障诊断中的实现方法与案例 #### 一、方法概述 卷积神经网络(CNN)通过自动提取振动信号中的故障特征,实现轴承状态的类。其核心流程包括**数据预处理**、**特征提取**、**模型训练**和**故障类**。根据信号处理方式的不同,主要为以下两类实现路径: 1. **基于时频图像的方法**(二维CNN) 通过连续小波变换(CWT)将原始振动信号转换为时频图像,再利用二维CNN处理图像特征。例如,引用[1]中使用CWT生成时频图,通过卷积层捕捉频率与时间的关联模式[^1]。 **数学表达**: 连续小波变换公式为: $$W(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} x(t) \psi^*\left(\frac{t-b}{a}\right) dt$$ 其中$a$为尺度参数,$b$为平移参数,$\psi(t)$为小波基函数。 2. **基于原始信号的方法**(一维CNN) 直接对一维时序信号进行卷积操作,适用于实时性要求高的场景。引用[2]中采用一维卷积层提取局部波形特征,结合池化层降低维度[^2]。 --- #### 二、实现步骤详解 ##### 路径1:CWT+二维CNN(Matlab案例参考) 1. **数据采集与预处理** - 采集轴承振动信号,划训练集和测试集。 - 对信号进行归一化处理:$x_{\text{norm}} = \frac{x - \mu}{\sigma}$,其中$\mu$为均值,$\sigma$为标准差。 2. **生成时频图像** - 使用CWT将信号转换为灰度图像(如Morlet小波基),每张图像对应一个故障类别标签。 3. **构建CNN模型** ```matlab layers = [ imageInputLayer([128 128 1]) % 输入时频图尺寸 convolution2dLayer(3, 32, 'Padding','same') % 3x3卷积核,32通道 batchNormalizationLayer reluLayer maxPooling2dLayer(2, 'Stride',2) fullyConnectedLayer(4) % 假设4类故障 softmaxLayer classificationLayer]; ``` 4. **训练与测试** - 设置优化器(如Adam)和学习率衰减策略。 - 通过混淆矩阵评估类准确率。 ##### 路径2:一维CNN(Python案例参考) 1. **信号段与增强** - 将长时序信号为固定长度(如1024点)的样本。 - 添加噪声或时间偏移以增强数据多样性。 2. **构建一维CNN模型** ```python model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(1024,1))) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(2, activation='softmax')) # 二类任务 ``` 3. **模型优化** - 使用交叉熵损失函数:$L = -\sum y_i \log(\hat{y}_i)$,其中$y_i$为真实标签,$\hat{y}_i$为预测概率。 - 采用早停法(Early Stopping)防止过拟合。 --- #### 三、关键问题与优化策略 - **数据不平衡**:对少数类样本进行过采样或调整损失函数权重。 - **计算效率**:一维CNN参数量更少,适合嵌入式部署;二维CNN特征表达能力更强,但需更高算力。 - **模型可解释性**:通过梯度加权类激活映射(Grad-CAM)可视化卷积层关注的信号区间。 ---
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值