day16| ● 104.二叉树的最大深度 ● 111.二叉树的最小深度 ● 222.完全二叉树的节点个数

day16 3.2 二叉树第三天

104.二叉树的最大深度

链接: 104.二叉树的最大深度
思路:本题可以使用前序(中左右),也可以使用后序遍历(左右中),使用前序求的就是深度,使用后序求的是高度。而根节点的高度就是二叉树的最大深度,所以本题中我们通过后序求的根节点高度来求的二叉树最大深度。

int maxDepth(struct TreeNode* root){
    //若传入结点为NULL,返回0
    if(!root)
        return 0;
    //求出左子树深度
    int left = maxDepth(root->left);
    //求出右子树深度
    int right = maxDepth(root->right);
    
    int max = left >right ? left : right;
    return max + 1;

}

111.二叉树的最小深度

链接: 111.二叉树的最小深度
思路:最小深度是从根节点到最近叶子节点的最短路径上的节点数量。,注意是叶子节点。

class Solution {
public:

    int getDepth(TreeNode* node){
        if(node == NULL) return 0;
        int leftDepth = getDepth(node->left);
        int rightDepth = getDepth(node->right);

        //当一个左子树为空,右不为空,这时并不是最低点
        if(node->left == NULL && node->right != NULL){
            return 1 + rightDepth;
        }
        //当一个右子树为空,左不为空,这时并不是最低点
        if(node->right == NULL && node->left != NULL){
            return 1 + leftDepth;
        }
        
        
        int result = 1 + min{leftDepth,rightDepth};
        return result;
    }


    int minDepth(TreeNode* root) {
        return getDepth(root);

    }
};

222.完全二叉树的节点个数

链接: 222.完全二叉树的节点个数
思路:递归法

class Solution {
private:
    int getNodesNum(TreeNode* cur){
        if(cur == 0) return 0;
        int leftNum = getNodesNum(cur->left);
        int rightNum = getNodesNum(cur->right);
        int treeNum = leftNum + rightNum + 1;
        return treeNum;
    }
public:
    int countNodes(TreeNode* root) {
        return getNodesNum(root);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值