day16 3.2 二叉树第三天
104.二叉树的最大深度
链接: 104.二叉树的最大深度
思路:本题可以使用前序(中左右),也可以使用后序遍历(左右中),使用前序求的就是深度,使用后序求的是高度。而根节点的高度就是二叉树的最大深度,所以本题中我们通过后序求的根节点高度来求的二叉树最大深度。
int maxDepth(struct TreeNode* root){
//若传入结点为NULL,返回0
if(!root)
return 0;
//求出左子树深度
int left = maxDepth(root->left);
//求出右子树深度
int right = maxDepth(root->right);
int max = left >right ? left : right;
return max + 1;
}
111.二叉树的最小深度
链接: 111.二叉树的最小深度
思路:最小深度是从根节点到最近叶子节点的最短路径上的节点数量。,注意是叶子节点。
class Solution {
public:
int getDepth(TreeNode* node){
if(node == NULL) return 0;
int leftDepth = getDepth(node->left);
int rightDepth = getDepth(node->right);
//当一个左子树为空,右不为空,这时并不是最低点
if(node->left == NULL && node->right != NULL){
return 1 + rightDepth;
}
//当一个右子树为空,左不为空,这时并不是最低点
if(node->right == NULL && node->left != NULL){
return 1 + leftDepth;
}
int result = 1 + min{leftDepth,rightDepth};
return result;
}
int minDepth(TreeNode* root) {
return getDepth(root);
}
};
222.完全二叉树的节点个数
链接: 222.完全二叉树的节点个数
思路:递归法
class Solution {
private:
int getNodesNum(TreeNode* cur){
if(cur == 0) return 0;
int leftNum = getNodesNum(cur->left);
int rightNum = getNodesNum(cur->right);
int treeNum = leftNum + rightNum + 1;
return treeNum;
}
public:
int countNodes(TreeNode* root) {
return getNodesNum(root);
}
};