day38|● 理论基础 ● 509. 斐波那契数 ● 70. 爬楼梯 ● 746. 使用最小花费爬楼梯

文章介绍了动态规划的概念,强调其在解决具有重叠子问题时的效率,并通过三个例子——509.斐波那契数、70.爬楼梯及746.使用最小花费爬楼梯——展示了动态规划的五部曲解题方法,包括确定dp数组、递推公式、初始化、遍历顺序和举例推导。代码示例展示了如何用动态规划求解这些经典问题。
摘要由CSDN通过智能技术生成

day38 3.24 动态规划第一天

理论基础

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。
动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的,
动规五部曲:
确定dp数组(dp table)以及下标的含义
确定递推公式
dp数组如何初始化
确定遍历顺序
举例推导dp数组

509. 斐波那契数

链接: 509. 斐波那契数
思路:五部曲,简单题练思想

class Solution {
public:
    int fib(int n) {
        if (n <= 1) return n;
        vector<int> dp(n+1);
        dp[0] = 0;
        dp[1] = 1;
        for (int i = 2; i <= n; i++) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
};

70. 爬楼梯

链接: 70. 爬楼梯
思路:

class Solution {
public:
    int climbStairs(int n) {
        if (n <= 1) return n;//因为下面直接对dp[2]操作了,防止空指针
        vector<int> dp(n + 1);
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) {//注意i是从3开始的
            dp[i] = dp[i - 1] + dp[i - 2]; 
        }
        return dp[n];
    }
};

746. 使用最小花费爬楼梯

链接: 746. 使用最小花费爬楼梯
思路:

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp(cost.size() + 1);
        dp[0] = 0;  //默认第一步都是不花费体力的
        dp[1] = 0;
        for (int i = 2; i <= cost.size(); i++) {
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[cost.size()];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值