2022杭电多校第五场题解

2022杭电多校第五场

在这里插入图片描述

Slipper(最短路)

题意
有一个以 1 1 1为根的有根树,每条边有一个边权 w w w,经过一条边消耗边权大小的能量。如果树上两点 u u u v v v之间深度之差恰好为 k k k,则两点之间可以相互到达,从 u u u v v v或从 v v v u u u消耗能量 p p p,问从 s s s t t t消耗的最少能量。

分析
建图跑最短路。将每一个深度看作一个结点,并且拆为入点和出点。每个结点向当前深度的入点连一条边权为0的边,每个深度的出点向同层所有结点连一条边权为0的边。两个深度之间如果差值为 k k k,则从入点向出点连一条边权为 p p p的边。时间复杂度 O ( n l o g ( n ) ) O(nlog(n)) O(nlog(n))

题解建图方法:
在这里插入图片描述

AC代码

typedef long long ll;
const int N=6e6+10;
const int M=2*N;
const ll inf=0x3f3f3f3f3f3f3f3f;
int head[N],e[M],ne[M],w[M],d[N],tot;
bool vis[N];
ll dis[N];
int n,s,t,k,p,mx;

void add(int x,int y,int z)
{
	e[++tot]=y,ne[tot]=head[x],head[x]=tot,w[tot]=z;
}

void dfs(int x) //dfs求深度 
{
	mx=max(d[x],mx);
	for(int i=head[x];i;i=ne[i])
	{
		int y=e[i];
		if(!d[y])
		{
			d[y]=d[x]+1;
			dfs(y);
		}
	}
}

void dij()
{
	for(int i=0;i<=3*n;i++) vis[i]=0;
	for(int i=0;i<=3*n;i++) dis[i]=inf;
	dis[s]=0;
	priority_queue<pair<ll,int>> q;
	q.push({0,s});
	while(q.size()>0)
	{
		int x=q.top().second;
		q.pop();
		if(vis[x]) continue;
		vis[x]=true;
		for(int i=head[x];i;i=ne[i])
		{
			int y=e[i];
			int z=w[i];
			if(dis[y]>dis[x]+z)
			{
				dis[y]=dis[x]+z;
				q.push({-dis[y],y});
			}
		}
	}
}

int main()
{
	int _;
	cin>>_;
	while(_--)
	{
		cin>>n;
		for(int i=1;i<=3*n;i++) head[i]=0;
		tot=0;
		for(int i=1;i<n;i++)
		{
			int x,y,z;
			cin>>x>>y>>z;
			add(x,y,z);
			add(y,x,z);
		}
		for(int i=1;i<=n;i++) d[i]=0;
		d[1]=1; mx=0;
		dfs(1);
		for(int i=1;i<=n;i++)
		{
			add(i,n+d[i],0);
			add(n+mx+d[i],i,0);
		}
		cin>>k>>p;
		cin>>s>>t;
		for(int i=1;i<=mx;i++) //入点向出点连边
		{
			int x;
			x=i+k;
			if(x<=mx) add(n+i,n+mx+x,p);
			x=i-k;
			if(x>0) add(n+i,n+mx+x,p);
		}
		dij();
		cout<<dis[t]<<endl;
	}
	return 0;
}

Count Set(排列组合 分治NTT)

题意
给定一个长度为 n n n的排列和一个非负整数 k k k,计算排列的子集 T T T的数量,要求 ∣ T ∣ = k |T|=k T=k ∣ P ( T ) ∩ T ∣ = 0 |P(T) \cap T|=0 P(T)T=0,其中 P ( T ) = { y ∣ y = p x , x ∈ T } P(T)=\left\{y \mid y=p_{x}, x \in T\right\} P(T)={yy=px,xT}

分析
p i p_i pi看做是 i i i p i p_i pi连的一条边,则排列 p p p可以分为若干个环。问题等价于从每个环中选取若干个环上不相临的点,点的总数为 k k k的方案数。从一个大小为 m m m的环中选取 k k k个不相邻的点的方案数是 ( m − k k ) + ( m − k − 1 k − 1 ) \left(\begin{array}{c} m-k \\ k \end{array}\right)+\left(\begin{array}{c} m-k-1 \\ k-1 \end{array}\right) (mkk)+(mk1k1)。分类讨论:环上的点从1~m编号,(1)选择1号点,问题转化为长度为 m − 3 m-3 m3的链上不相临问题,方案数为 C ( m − k − 1 , k − 1 ) C(m-k-1,k-1) C(mk1,k1),(2)不选1号点,整个环从1号点处断开,问题转化为长度为 m − 1 m-1 m1的链上不相临问题,方案数为 C ( m − k , k ) C(m-k,k) C(mk,k)。需要注意的是,若环上只有一个点,认为这个点和自身相邻。推出这个式子后可以得到每个环的生成函数,使用分治NTT求指数为 k k k的多项式项的系数。

AC代码

#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define MUL(a, b) (ll(a) * (b) % P)
#define ADD(a, b) (((a) += (b)) >= P ? (a) -= P : 0)
typedef long long ll;
const int N=5e5+10;
const int mod=998244353;
const int P=mod;
int a[N],vis[N];
ll fac[N],inv[N];
int n,k,cnt;

ll ksm(ll a,ll b)
{
	ll ans=1;
	for(;b;b>>=1)
	{
		if(b&1) ans=ans*a%mod;
		a=a*a%mod;
	}
	return ans;
}

using Poly = vector<int>;
vector<Poly> vec;
namespace NTT {
    const int g = 3;
    Poly Omega(int L) {
        int wn = ksm(g, P / L);
        Poly w(L); w[L >> 1] = 1;
        rep(i, L / 2 + 1, L - 1) w[i] = MUL(w[i - 1], wn);
        per(i, L / 2 - 1, 1) w[i] = w[i << 1];
        return w;
    }
    auto W = Omega(1 << 19);
    void DIF(int *a, int n) {
        for (int k = n >> 1; k; k >>= 1)
            for (int i = 0, y; i < n; i += k << 1)
                for (int j = 0; j < k; ++j)
                    y = a[i + j + k], a[i + j + k] = MUL(a[i + j] - y + P, W[k + j]), ADD(a[i + j], y);
    }
    void IDIT(int *a, int n) {
        for (int k = 1; k < n; k <<= 1)
            for (int i = 0, x, y; i < n; i += k << 1)
                for (int j = 0; j < k; ++j)
                    x = a[i + j], y = MUL(a[i + j + k], W[k + j]),
                    a[i + j + k] = x - y < 0 ? x - y + P : x - y, ADD(a[i + j], y);
        int Inv = P - (P - 1) / n;
        rep(i, 0, n - 1) a[i] = MUL(a[i], Inv);
        reverse(a + 1, a + n);
    }
}

namespace Polynomial {
	void DFT(Poly &a) { NTT::DIF(a.data(), a.size()); }
    void IDFT(Poly &a) { NTT::IDIT(a.data(), a.size()); }
    int norm(int n) { return 1 << (__lg(n - 1) + 1); }
    void norm(Poly &a) { if (!a.empty()) a.resize(norm(a.size()), 0); else a = {0}; }
    Poly &dot(Poly &a, Poly &b) { rep(i, 0, a.size() - 1) a[i] = MUL(a[i], b[i]); return a; }
    Poly operator*(Poly a, Poly b)
	{
        int n = a.size() + b.size() - 1, L = norm(n);
        if (a.size() <= 100 || b.size() <= 100) {
            Poly c(n);
            rep(i, 0, a.size() - 1) rep(j, 0, b.size() - 1)
                c[i + j] = (c[i + j] + (ll) a[i] * b[j]) % P;
            return c;
        }
        a.resize(L), b.resize(L);
        DFT(a), DFT(b), dot(a, b), IDFT(a);
        return a.resize(n), a;
    }
};
using namespace Polynomial;

void init(int n)
{
	fac[0]=inv[0]=1;
	for(int i=1;i<=n;i++) fac[i]=fac[i-1]*i%mod;
	inv[n]=ksm(fac[n],mod-2);
	for(int i=n;i>=1;i--) inv[i-1]=inv[i]*i%mod;
}

ll C(int a,int b)
{
	return fac[a]*inv[b]%mod*inv[a-b]%mod;
}

Poly calc(int l,int r)
{
	int mid=(l+r)>>1;
	if(l==r) return vec[l];
	return calc(l,mid)*calc(mid+1,r);
}

int main()
{
	int T;
	cin>>T;
	init(500000);
	while(T--)
	{
		cin>>n>>k;
		for(int i=1;i<=n;i++) cin>>a[i];
		if(k>n/2)
		{
			cout<<0<<endl;
			continue;
		}
		for(int i=1;i<=n;i++) vis[i]=0;
		vec.clear();
		for(int i=1;i<=n;i++)
		{
			if(!vis[i])
			{
				cnt=0;
				int x=i;
				while(!vis[x])
				{
					cnt++;
					vis[x]=1;
					x=a[x];
				}
				Poly poly(cnt/2+1);
				for(int i=0;i<=cnt/2;i++) poly[i]=(C(cnt-i,i)+C(cnt-i-1,i-1))%mod;
				vec.push_back(poly);
			}
		}
		Poly ans=calc(0,(int)vec.size()-1);
		if(ans.size()>k) cout<<ans[k]<<endl;
		else cout<<0<<endl;
	}
	return 0;
}

Bragging Dice(思维)

题意
YahAHa和Peanut在玩骰子游戏,游戏规则如下:
两个玩家各有 n n n个筛子,并且都放在各自的杯子中。两位玩家轮流进行,YahAHa先手。在第一轮YahAHa可以宣布“两个杯子中有 x x x个筛子的点数是 y y y点”。接下来Peanut有两种选择:

  • 挑战YahAHa,此时游戏结束。两位玩家打开各自的杯子,如果恰好有 x ( x ≥ 1 ) x(x \geq 1) x(x1) y ( 1 ≤ y ≤ 6 ) y(1 \leq y \leq 6) y(1y6)点的筛子,YahAHa胜,否则Peanut胜。
  • 继续宣布“两个杯子中有 x 1 x_1 x1个筛子的点数是 y 1 y_1 y1”,要求 x 1 > x x_1>x x1>x 1 ≤ y 1 ≤ 6 1 \leq y_1 \leq 6 1y16 或者 x 1 = x x_1=x x1=x y 1 ≥ y y1 \geq y y1y

为了使游戏更有趣,这里有一些特殊规则:

  • 如果没有人宣布“有 x x x个1点的筛子”,那么1点可认为是任意点数
  • 如果一个杯子中所有筛子点数相同,就认为杯子中还有一个同点数的筛子
  • 如果一个杯子中筛子的点数各不相同,则认为各个点数的筛子个数为0

如果同时满足多条特殊规则,优先考虑第三条规则。
两个玩家都知道两个杯子中每个筛子的点数。
问在最优策略下YahAHa是否能够获胜。

分析
如果两个杯子中的点数都各不相同,那么所有点数的个数都为0,而规则要求 x ≥ 1 x \geq 1 x1,在YahAHa宣布之后,Peanut选择结束游戏,Peanut必胜。除了这种情况,YahAHa可以宣布个数不为0的最大点数的个数,YahAHa必胜。

AC代码

const int N=2e5+10;
int a[N],b[N];

int main()
{
	int _;
	cin>>_;
	while(_--)
	{
		int n;
		cin>>n;
		set<int> s,t;
		for(int i=1;i<=n;i++) cin>>a[i],t.insert(a[i]);
		for(int i=1;i<=n;i++) cin>>b[i],s.insert(b[i]);
		if(s.size()==n&&t.size()==n) cout<<"Just a game of chance."<<endl;
		else cout<<"Win!"<<endl;
	}
	return 0;
}

Buy Figurines(优先队列 线段树二分)

题意
n n n个人打算去买雕像,有 m m m个窗口,每个窗口可以看作是一个队列。第 i i i个人的到达时间是 a i a_i ai且花费 s i s_i si的时间购买雕像。每个人到达的时候优先选择人数少的队列,如果多个队列人数最少,则优先选择编号小的队列。如果同一时间点有人离开有人到达,来的人会在要离开的人离开后做出选择。输出最后一个离开的人离开的时间。

分析
用优先队列维护每个队列的结束时间,用线段树维护每个队列的人数。在第 i i i个人到达时,更新结束时间 ≤ a i \leq a_i ai的队列,每个人最多入队一次,出队一次。更新队列的结束时间和人数后,通过线段树二分查找人数最少且编号最小的队列。时间复杂度 O ( n l o g ( n ) ) O(nlog(n)) O(nlog(n))

题解的做法也是类似的,不同的是用set维护。

在这里插入图片描述

AC代码

typedef long long ll;
const int N=2e5+10;
int tr[N<<2];
int cnt[N]; //每个队列的人数 
ll tim[N]; //每个队列的结束时间 
struct node {
	ll x,s;
	bool operator<(const node &a) {
		return x<a.x;
	}
}p[N];

void build(int p,int l,int r)
{
	if(l==r)
	{
		tr[p]=0;
		return ;
	}
	int mid=(l+r)>>1;
	build(p<<1,l,mid);
	build(p<<1|1,mid+1,r);
	tr[p]=min(tr[p<<1],tr[p<<1|1]);
}

void change(int p,int l,int r,int x)
{
	if(l==r)
	{
		tr[p]=cnt[l];
		return ;
	}
	int mid=(l+r)>>1;
	if(x<=mid) change(p<<1,l,mid,x);
	else change(p<<1|1,mid+1,r,x);
	tr[p]=min(tr[p<<1],tr[p<<1|1]);
}

int query(int p,int l,int r,int x,int y,int mn) //线段树二分
{
	if(l==r) return l;
	int mid=(l+r)>>1;
	if(tr[p<<1]==mn) return query(p<<1,l,mid,x,y,mn);
	else return query(p<<1|1,mid+1,r,x,y,mn);
}

int main()
{
	int _;
	cin>>_;
	while(_--)
	{
		int n,m;
		cin>>n>>m;
		for(int i=1;i<=m;i++) cnt[i]=0,tim[i]=0;
		build(1,1,m);
		priority_queue<pair<ll,int>> q;
		for(int i=1;i<=n;i++) cin>>p[i].x>>p[i].s;
		sort(p+1,p+n+1); //按到达时间排序 
		for(int i=1;i<=n;i++)
		{
			ll x=p[i].x,s=p[i].s;
			while(q.size()>0)
			{
				ll z=-q.top().first;
				int y=q.top().second;
				if(z<=x)
				{
					cnt[y]--;
					change(1,1,m,y);
					q.pop();
				}
				else break;
			}
			int mn=tr[1]; //队列最少人数 
			int t=query(1,1,m,1,m,mn); //选择第t个队列 
			cnt[t]++;
			change(1,1,m,t);
			tim[t]=max(tim[t],x)+s;
			q.push({-tim[t],t});
		}
		ll ans=0;
		for(int i=1;i<=m;i++) ans=max(ans,tim[i]);
		cout<<ans<<endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值