深度学习
文章平均质量分 71
万物皆为对象,万物皆可学习!
「已注销」
这个作者很懒,什么都没留下…
展开
-
降维与特征选择
主成分分析(Principle Component Analysis, PCA)主成分分析是一种线性、非监督、全局的降维算法PCA的目的是找到数据中的主成分,并利用这些主成分表征原始数据从而达到降维的目的具体讲就是:用少数的若干新变量(原变量的线性组合)替代原变量,新变量要尽可能多地反映原变量的数据信息,同时,新变量之间相互正交,可以消除原变量中相互重叠的信息主成分分析过程推导设样本的标准化输入变量矩阵为:构造一个变量P1P_1P1,且变量P1P_1P1能携带标准化输入变量矩阵原创 2021-07-29 17:06:42 · 874 阅读 · 2 评论 -
批量归一化
批归一化批量归一化的基本动机神经网络训练过程的本质是学习数据分布,然而随着网络训练的进行,每个隐层的参数变化使得后一层的输入发生变化,从而每一批训练数据的分布也随之改变,致使网络在每次迭代中都需要拟合不同的数据分布,增大训练的复杂度以及过拟合的风险。批量归一化(Batch Normalization)批量归一化方法是针对每一批数据,在网络的每一层输入之前增加归一化处理(均值为0,标准差为1),将所有批数据强制在统一的数据分布下,即对该层的任意一个神经元(假设为第kkk维)x‾k\overli原创 2021-07-22 18:15:34 · 1209 阅读 · 0 评论 -
mnist数据集介绍
背景MNIST数据集来自美国国家标准与技术研究所收集,下载tensorflow2.0版本以后,mnist数据集可以通过keras.datasets的API接口直接下载from tensorflow import kerasimport matplotlib.pyplot as plt# 加载mnist数据集(train_images, train_labels), (test_images, test_labels) = keras.datasets.mnist.load_data()下原创 2021-07-06 10:55:38 · 1562 阅读 · 0 评论 -
数据归一化
什么是归一化?将数据映射到[0, 1]或[-1, 1]区间或其他的区间为什么要归一化?输入数据的单位不一样,有些数据的范围 可能特别大,导致的结果是神经网络收敛慢、训练时间长数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。例如:神经网络的输出层若采用S型激活函数,由于S型函数的值域限制在(0, 1),也就是说神经网络的输出只能限制在(0, 1),所以训练原创 2021-07-02 23:23:14 · 130 阅读 · 3 评论 -
用mnist训练LeNet-5模型
内容简介模型剖析构建全连接神经网络优化模型,提高准确率LeNet-5模型模型剖析.shape的使用: print(img.shape) # 返回图像的高度、宽度以及通道数 print(img.shape[0]) # 元组的第一个元素为行数/读入图片的高度 print(img.shape[1]) # 元组的第一列元素为列数/读入图片的宽度查看mnist数据集信息 # 引入keras from tensorflow import keras原创 2021-06-23 11:09:45 · 1093 阅读 · 1 评论 -
GTX1650 搭建TensorFlow-GPU 2.4框架(CUDA11.0 + cudnn 8.04 + anaconda 3.8)
个人电脑配置:CPU i5-9300H 、GPU GTX1650、windows系统 20H2采用的方案:Anaconda3-2020.11-Windows-x86_64(内置Python3.8版本解释器)、PyCharm 2020.3.3、TensorFlow2.4 + CUDA11. + CuDNN8.0文章提供了详细的安装过程,以及安装用到的文件包下载链接,同时也放上了个人网盘资源链接,并且分享了自己在安装过程中所遇到的问题,相信对安装tensorflow gpu版本的读者会有很大的帮助原创 2021-05-14 23:25:29 · 10257 阅读 · 22 评论