上台阶问题

该博客讨论了如何解决楼梯上台阶问题,当每步可以上1、2或3个台阶时,如何计算到达n阶楼梯的不同方法数。文章指出,原始递归解决方案在n较大时效率低下,可能会导致耗时和栈溢出。为了优化,博客提到了使用记忆化递归和递推迭代两种方法来避免重复子问题,提高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题: 楼梯有n阶台阶,一步可以走1个、2个或者3个台阶,一共有多少种上楼梯的方法?

代码实现:

#include<iostream>
using namespace std;

int cnt=0;//用于计数
void f(int n)//n表示还剩你个台阶需要走
{
    if(n<0) return; //防止死循环
    if(n==0)
    {
        cnt++;
        return;
    }
    f(n-1); //走一步
    f(n-2); //走两步
    f(n-3); //走三步
}
int main()
{
    int n;
    cin>>n;
    f(n);
    cout<<cnt;
    return 0;
}

缺陷: 当n比较大时,耗时巨大甚至可能爆栈。分析可知,在上述的递归中存在大量的重复子问题,做了大量的无用功。为了解决重复子问题,可以使用记忆型的递归进行优化。

代码实现:

#include<iostream>
using namespace std;


int dp[1001];//假设楼梯的台阶数可以达到1000
int f(int n)//n表示还剩你个台阶需要走
{
	if(n<0) return 0; //防止死循环,要放在前面,防止dp角标小于0
    if(dp[n]!=0) return dp[n];
    int cnt=0;//用于计数
    if(n==0)
    {
        cnt++;
        return cnt;
    }
    cnt+=f(n-1); //走一步
    cnt+=f(n-2); //走两步
    cnt+=f(n-3); //走三步
    dp[n]=cnt;
    return cnt;
}
int main()
{
    int n;
    cin>>n;
    cout<<f(n);
    return 0;
}

递推迭代的方法: 常规的正向思维。

代码实现:

#include<iostream>
using namespace std;

int f(int n)
{
    if(n<=0) return 0;
    if(n==1) return 1;
    if(n==2) return 2;
    if(n==3) return 4;
    int x1=1,x2=2,x3=4;
    for(int i=4;i<=n;i++)   //迭代
    {
        int temp=x1;
        x1=x2;
        x2=x3;
        x3=temp+x1+x2;
    }
    return x3;
}

int main()
{
    int n;
    cin>>n;
    cout<<f(n);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值