hdu 2045(dp解法)

hdu 2045 不容易系列之(3)—— LELE的RPG难题

在这里插入图片描述

dp 做法,三维数组dp[i][j][k]表示长度为i时,开头颜色为j,结尾颜色为k,不断向后枚举打表,即可得出答案。(递推做法一开始没想出来)

#include<bits/stdc++.h>

using namespace std;
const int maxn = 5e6 + 5;
const double pi = 3.1415927;
const int mod = 1000;
typedef long long ll;
// dp[i][j][k],表示到第i个位置,开头是颜色j,结尾是颜色k的涂法
ll dp[55][4][4];

void init() {
	// 长度为1时,每种颜色1种情况
    dp[1][1][1] = 1, dp[1][2][2] = 1, dp[1][3][3] = 1;
    // 长度为2初始化
    for(int i=1;i<=3;i++){
        for(int j=1;j<=3;j++){
            if (i==j) continue;
            dp[2][i][j] = 1;
        }
    }
    for (int i = 3; i <= 50; i++) {
        // 枚举开头的颜色,其实可以不用循环
        for (int j = 1; j <= 3; j++) {
            // 开头为颜色1
            if (j == 1){
                // 继承长度为i-1的合法种数
                dp[i][j][1] = dp[i-1][j][2]+dp[i-1][j][3];
                // 长度为i-1时,有1...1和1...3两种情况
                dp[i][j][2] = dp[i-1][j][3]+dp[i-1][j][1];
               // 长度为i-1时,有1...1和1....2两种情况
                dp[i][j][3] = dp[i-1][j][2]+dp[i-1][j][1];
            }
            if (j==2){
                dp[i][j][2] = dp[i-1][j][1]+dp[i-1][j][3];
                dp[i][j][1] = dp[i-1][j][3]+dp[i-1][j][2];
                dp[i][j][3] = dp[i-1][j][1]+dp[i-1][j][2];
            }
            if (j==3){
                dp[i][j][3] = dp[i-1][j][1]+dp[i-1][j][2];
                dp[i][j][1] = dp[i-1][j][2]+dp[i-1][j][3];
                dp[i][j][2] = dp[i-1][j][1]+dp[i-1][j][3];
            }
        }
    }
}

void solve() {
    int n;
    while (cin>>n){
        ll ans = 0;
        if (n==1){
            cout<<3<<'\n';
            continue;
        }
        for(int i=1;i<=3;i++){
            for(int j=1;j<=3;j++){
                if (i == j) continue;
                ans += dp[n][i][j];
            }
        }
        cout<<ans<<'\n';
    }
}

int main() {
    int T = 1;
//    cin >> T;
    init();
    while (T--) {
        solve();
    }
    return 0;
}```

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是hdu4310的Java解法: ```java import java.util.*; import java.io.*; public class Main { static int MAXN = 100010; static int MAXM = 200010; static int INF = 0x3f3f3f3f; static int n, m, s, t, cnt; static int[] head = new int[MAXN]; static int[] dis = new int[MAXN]; static boolean[] vis = new boolean[MAXN]; static int[] pre = new int[MAXN]; static int[] cur = new int[MAXN]; static class Edge { int to, next, cap, flow, cost; public Edge(int to, int next, int cap, int flow, int cost) { this.to = to; this.next = next; this.cap = cap; this.flow = flow; this.cost = cost; } } static Edge[] edge = new Edge[MAXM]; static void addEdge(int u, int v, int cap, int flow, int cost) { edge[cnt] = new Edge(v, head[u], cap, flow, cost); head[u] = cnt++; edge[cnt] = new Edge(u, head[v], 0, 0, -cost); head[v] = cnt++; } static boolean spfa() { Arrays.fill(dis, INF); Arrays.fill(vis, false); Queue<Integer> q = new LinkedList<>(); q.offer(s); dis[s] = 0; vis[s] = true; while (!q.isEmpty()) { int u = q.poll(); vis[u] = false; for (int i = head[u]; i != -1; i = edge[i].next) { int v = edge[i].to; if (edge[i].cap > edge[i].flow && dis[v] > dis[u] + edge[i].cost) { dis[v] = dis[u] + edge[i].cost; pre[v] = u; cur[v] = i; if (!vis[v]) { vis[v] = true; q.offer(v); } } } } return dis[t] != INF; } static int[] MCMF(int s, int t) { int flow = 0, cost = 0; while (spfa()) { int f = INF; for (int u = t; u != s; u = pre[u]) { f = Math.min(f, edge[cur[u]].cap - edge[cur[u]].flow); } for (int u = t; u != s; u = pre[u]) { edge[cur[u]].flow += f; edge[cur[u] ^ 1].flow -= f; cost += edge[cur[u]].cost * f; } flow += f; } return new int[]{flow, cost}; } public static void main(String[] args) { Scanner in = new Scanner(new BufferedReader(new InputStreamReader(System.in))); int T = in.nextInt(); for (int cas = 1; cas <= T; cas++) { n = in.nextInt(); m = in.nextInt(); s = 0; t = n + m + 1; cnt = 0; Arrays.fill(head, -1); for (int i = 1; i <= n; i++) { int c = in.nextInt(); addEdge(s, i, c, 0, 0); } for (int i = 1; i <= m; i++) { int c = in.nextInt(); addEdge(i + n, t, c, 0, 0); } for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { int c = in.nextInt(); addEdge(i, j + n, INF, 0, c); } } int[] ans = MCMF(s, t); System.out.printf("Case #%d: %d\n", cas, ans[1]); } } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值