1.题目描述:
2.题意:
给定一个序列a,每次可以选择连续的一段区间进行加一或减一操作,求最少使序列元素全部相同的操作次数以及这样的序列一共有多少种。
3.思路:
差分 。 对于区间操作来说,我们一般使用差分来改变区间,设差分数组为d[i],改变[l,r]这段区间的话,我们就只需要在d[l]与d[r+1]上改变就可以了。对于这道题目来说,我们直接对差分进行操作,那么原问题就转换为:将差分数组(除了d[1])变为0。 而我们操作的含义也就变成了:可以将差分数组的一个数+1,另一个数-1。 考虑边界问题,我们将所有的操作分为三种:
1. 2<=i,j<=n,d[i]±1 && d[j]±1. (d[i]加,d[j]就减,反之亦然)【i=l/r+1;j=r+1/ l】
2. i=1,2<=j<=n d[j]±1. (对原数组前缀进行操作)
3. 2<=i<=n, j=n+1 d[i]±1. (对原数组后缀进行操作)
所以我们只需要讨论d数组中,2~n里,正数的和 pos 以及负数的和的绝对值 neg。然后变化次数就是min(pos,neg)+abs(pos-neg)、种类就是 abs(pos-neg)+1。
【直观地来讲,就是min(pos,neg)是第一种操作的次数,而剩下的差值就只能够执行后面两种操作,所以操作数就是min(pos)+abs(pos-neg)。而种类呢则是剩余部分可以任意地去匹配剩余的abs(pos-neg)+1个。】
4.代码:
//AcWing 100. IncDec序列
//#include<bits/stdc++.h>
//#pragma GCC optimize(3,"Ofast","inline")
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
//#include<random>
#include<cstdlib>
#include<ctime>
#include<fstream>
#include<map>
#include<stack>
#include<queue>
#define FAST ios::sync_with_stdio(false)
#define DEV_RND ((int)rand()*RAND_MAX+rand())
#define RND(L,R) (DEV_RND%((R)-(L)+1)+(L))
#define abs(a) ((a)>=0?(a):-(a))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define rep(i,a,n) for(int i=a;i<n;++i)
#define repn(i,a,n,t) for(int i=a;i<n;i+=t)
#define per(i,n,a) for(int i=n-1;i>=a;--i)
#define pern(i,n,a,t) for(int i=n-1;i>=a;i-=t)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define li inline
#define re register
using namespace std;
//typedef uniform_int_distribution<int> RNDI;
typedef pair<int,int> PII;
typedef vector<int> VI;
typedef double db;
typedef long long ll;
typedef long double ld;
const int maxn = 1e5+5;
const int maxm = 100000+5;
const int inf=0x3f3f3f3f;
const double eps = 1e-9;
const double pi=acos(-1);
const int mod = 1e9+7;
//int dir[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
//li int f(int x){return x==par[x]?par[x]:par[x]=f(par[x]);}
//mt19937 eng(time(0));
li ll lowbit(ll x){return x&(-x);}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
//li int RND(int L,int R){RNDI rnd(L,R);return rnd(eng);}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
li ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res%MOD;}
li ll qmul(ll a,ll b,ll MOD=mod){return (a*b-(ll)((long double)a/MOD*b)*MOD+MOD)%MOD;}
li ll Qpow(ll a,ll b,ll MOD){ll res=1;while(b>0){if(b&1) res=qmul(res,a,MOD);a=qmul(a,a,MOD);b>>=1;}return res%MOD;}
li ll invp(ll x,ll p){return qpow(x,p-2,p);}
ll invd(ll x,ll p){ll res,d,t;ex_gcd(x,p,d,res,t);return res;}
li ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
li void debug(){ofstream fout("C:\\Users\\Administrator\\Desktop\\in.txt");fout.close();}
namespace IO
{
li int read()
{
int x=0,sign=1;char c=getchar();
while(c>'9'||c<'0') {if(c=='-') sign=-1;c=getchar();}
while('0'<=c&&c<='9') x=x*10+c-'0',c=getchar();
return x*sign;
}
template<typename T>
li void write(T x,char t='\n')
{
if(x<0){x=-x;putchar('-');};
static int sta[25];int top=0;
do{sta[top++]=x%10,x/=10;}while(x);
while(top) putchar(sta[--top]+'0');
putchar(t);
}
}
using namespace IO;
/*-------------head-------------*/
//
int n;
ll a[maxn],d[maxn],neg,pos;
li void solve()
{
neg=0,pos=0;
rep(i,1,n+1)
{
a[i]=read(),d[i]=a[i]-a[i-1];
if(i>1)
{
if(d[i]>0) pos+=d[i];
else neg-=d[i];
}
}
ll tes=abs(pos-neg);
write(min(pos,neg)+tes);
write(tes+1);
//puts("");
}
int main()
{
//srand(time(0));debug();
//clock_t start_time=clock();
//freopen("C:\\Users\\Administrator\\Desktop\\in.txt","r",stdin);
//for(int QwQ=read();QwQ;QwQ--) solve();
while(~scanf("%d",&n)) solve();
//cerr<<"Time:"<<clock()-start_time<<"ms\n";
return 0;
}