1.题目描述:
2.题意:
已知一个01序列,给出若干个区间以及奇偶信息,信息代表:在[l,r]区间里,1数目的奇偶性。问在这些信息里,第一个出错的是哪一个信息,如果没有,输出所有信息数m。
3.思路:
带权并查集。 【老子连老司机树都想到了但是就是不会带权并查集QwQ】
如果做过HDU-3038的话会发现,这两题惊人的相似。都要求与之前信息相矛盾的信息。
对于带权并查集我们要先知道两个操作:找祖先以及合并集合:
a)找祖先,也就是:find操作。
//par[x]:x的祖先;val[x]:x与祖先之间的权值
int find(int x)
{
if(par[x]==x) return x;
int t=find(par[x]);
val[x]+=val[par[x]];
return par[x]=t;
}
由于我们在递归找祖先的时候,父亲节点会跟着改变,所以我们得先记录下来,然后再去改变权值。如果直观理解的话:t代表最终的祖先节点,然后现在的权值加上父亲的权值,然后再让自身的父亲变成最终的祖先节点。
b)合并集合,也就是:merge操作。
//s:x与y之间的权值
void merge(int x,int y,int s)
{
int fx=find(x),fy=find(y);
if(fx!=fy)
{
par[fx]=fy;
val[fx]=-val[x]+val[y]+s;
}
}
直观理解的话就是:从x出发到fy的路径长度要等于从x出发经过y到达fy的路径长度。列一个方程就是:val[x]+X(fx->fy的权值)=s(x到y的权值)+val[y] =>X=-val[x]+val[y]+s
在知道带权并查集之后,我们来看这道题目如何转化成带权并查集。首先,[l,r]区间中的1的个数的奇偶性,我们可以看成是[l,r]区间中1的数量。那么这个数量又可以进一步拓展成前缀和相减:sum[r]-sum[l-1]。有了这个之后,我们就可以把sum[i]当成是点了,那么两个点之间的权值,或者说关系是什么呢?我们来看一下奇偶性在减法下的规律:
奇-偶=奇;
偶-奇=奇;
偶-偶=偶;
奇-奇=偶:
我们可以发现:当前后奇偶性相同时,减法结果为偶;不同时为奇。于是我们的权值就定为:节点与祖先的奇偶性是否相同。 数值上:奇取为1,偶取为0;那么我们就有了判定是否矛盾的条件了:当l与r的祖先一样时,如果val[l]^val[r]!=s,那么就矛盾! 为啥是异或呢?因为异或的逆运算也是异或,a ^ b=c,有:a=c ^ b。所以可以直接用异或去判断。
4.代码:
//B
//#include<bits/stdc++.h>
//#pragma GCC optimize(3,"Ofast","inline")
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
//#include<random>
#include<cstdlib>
#include<ctime>
#include<map>
#include<set>
#include<stack>
#include<queue>
#define FAST ios::sync_with_stdio(false)
#define DEV_RND ((int)rand()*RAND_MAX+rand())
#define RND(L,R) (DEV_RND%((R)-(L)+1)+(L))
#define abs(a) ((a)>=0?(a):-(a))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define rep(i,a,n) for(int i=a;i<n;++i)
#define per(i,n,a) for(int i=n-1;i>=a;--i)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define li inline
#define re register
using namespace std;
//typedef uniform_int_distribution<int> RNDI;
typedef pair<int,int> PII;
typedef vector<int> VI;
typedef double db;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
const int Hash = 131;//13331
const int maxn = 1e4+5;
const int maxm = 100000+5;
const int mod = 1e9+7;
const int inf = 0x3f3f3f3f;
const double eps = 1e-7;
const double pi = acos(-1);
//int dir[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
//li int f(int x){return x==par[x]?par[x]:par[x]=f(par[x]);}
//mt19937 eng(time(0));
//li int RND(int L,int R){RNDI rnd(L,R);return rnd(eng);}
li ll lowbit(ll x){return x&(-x);}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
li ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res%MOD;}
li ll qmul(ll a,ll b,ll MOD=mod){return (a*b-(ll)((long double)a/MOD*b)*MOD+MOD)%MOD;}
li ll inv(ll x,ll p){return qpow(x,p-2,p);}
li ll jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
db f(db x){return x;}
li db sim(db l,db r){return (f(l)+4.*f((l+r)/2.)+f(r))*(r-l)/6.;}
db asr(db l,db r,db ans,db eps){db m=l+(r-l)/2.,L=sim(l,m),R=sim(m,r);return fabs(L+R-ans)<=15.*eps?L+R+(L+R-ans)/15.:asr(l,m,L,eps/2)+asr(m,r,R,eps/2);}
db asr(db l,db r,db eps){return asr(l,r,sim(l,r),eps);}
namespace IO
{
li ll read()
{
ll x=0,sign=1;char c=getchar();
while(c>'9'||c<'0') {if(c=='-') sign=-1;c=getchar();}
while('0'<=c&&c<='9') x=x*10+c-'0',c=getchar();
return x*sign;
}
template<typename T>
li void write(T x,char t='\n')
{
if(x<0){x=-x;putchar('-');};
static int sta[25];int top=0;
do{sta[top++]=x%10;}while(x/=10);
while(top) putchar(sta[--top]+'0');
putchar(t);
}
}
using namespace IO;
/*-------------head-------------*/
//
int par[maxn];
bool val[maxn];
int n,m;
int sta[maxn][3];
int x[maxn];
int f(int x)
{
if(x==par[x]) return x;
int t=f(par[x]);
val[x]^=val[par[x]];
return par[x]=t;
}
li void solve()
{
m=read();
int cnt=1;
//离散化
rep(i,0,m)
{
sta[i][0]=read();
sta[i][1]=read();
char s[5];scanf("%s",s);
sta[i][2]=*s=='e'?0:1;
x[cnt++]=sta[i][0];
x[cnt++]=sta[i][1];
}
sort(x+1,x+1+cnt);
int sz=unique(x+1,x+1+cnt)-x;
rep(i,0,m)
{
sta[i][0]=lower_bound(x+1,x+1+sz,sta[i][0])-x;
sta[i][1]=lower_bound(x+1,x+1+sz,sta[i][1])-x;
}
//带权并查集
rep(i,0,sz+1) par[i]=i,val[i]=0;
int ans=m;
rep(i,0,m)
{
int l=sta[i][0]-1,r=sta[i][1],c=sta[i][2];
int fl=f(l),fr=f(r);
if(fl==fr)
{
if(val[l]^val[r]!=c)
{
ans=i;
break;
}
}
else
{
par[fl]=fr;
val[fl]=val[l]^val[r]^c;
}
}
write(ans);
//puts("");
}
int main()
{
//srand(time(0));
//freopen("C:\\Users\\Administrator\\Desktop\\in.txt","r",stdin);
//for(int QwQ=read();QwQ;QwQ--) solve();
while(scanf("%d",&n),~n) solve();
return 0;
}