关联规则分析

一、关联分析

关联分析是一种无监督机器学习方法,是用来分析大规模数据集中事务之间的依存性和关联性,挖掘数据集中有价值的关系,有力于对相关的事务进行预测,帮助我们进行合理的决策,在关联分析中最为典型的例子就是购物篮分析,通过发现顾客放入购物篮的不同商品之间的关系,来分析出顾客的购买习惯,通过分析哪些商品是被顾客频繁购买,来帮助零售商等制定合理的营销策略,另外关联分析还用于餐饮企业的菜品搭配、搜索引擎内容的推荐、新闻流行趋势的分析等等。

二、基本概念

1、事务:每条交易都可看作成一个事务

  • 项:每条交易中的每个物品都可以称为一个项,如牛奶,面包等
  • 项集:包含零个或多个项的集合称为项集,如牛奶,面包,尿布
  • 规则:从项集中找出各项之间的关系,如关联规则牛奶--面包

2、支持度:指的某个商品组合出现的次数和总次数之间的比例,以百分比表示。支持度越高,代表这个组合出现的频率越大。

3、置信度:指的是当购买商品A的,会有多大概率去买商品B,是一个条件概率

4、提升度:商品A出现,对商品B的出现概率提升的程度。公式:提升度(A-B)=置信度(A-B)/支持度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值