大数据相关博客的目录

Hadoop 是什么

Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
主要解决,海量数据的存储和海量数据的分析计算问题。
广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。

1hadoop生态圈

Hadoop 发展历史

为了实现与Google类似的全文搜索功能,Hadoop创始人Doug Cutting在Lucene框架基础上进行优化升级,查询引擎和索引引擎,名字来源于儿子的玩具大象 。

2doug-cutting

对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。
作者通过参考Google的三篇论文,学习和模仿Google找到了解决这些问题的办法——微型版Nutch,因此可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文)

GoogleHadoop
GFSHDFS
Map-ReduceMR
BigTableHBase

3hadoop

  • 2001年年底Lucene成为Apache基金会的一个子项目。
  • 2003-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用 了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升。
  • 2005年Hadoop作为Lucene的子项目Nutch的一部分正式引入Apache基金会。
  • 2006年3月份,Map-Reduce和Nutch Distributed File System (NDFS)分别被纳入到 Hadoop 项目中,Hadoop就此正式诞生,标志着大数据时代来临。

Hadoop三大发行版本

Hadoop 三大发行版本:Apache、Cloudera、Hortonworks。
Apache 版本最原始(最基础)的版本,对于入门学习最好。(2006年)
Cloudera 内部集成了很多大数据框架,对应产品 CDH。(2008年)
Hortonworks 文档较好,对应产品 HDP。(2011年)
Hortonworks 现在已经被 Cloudera 公司收购,推出新的品牌 CDP。

Apache Hadoop

官网地址:http://hadoop.apache.org
下载地址:https://hadoop.apache.org/releases.html

Cloudera Hadoop

官网地址:https://www.cloudera.com/downloads/cdh
下载地址:https://docs.cloudera.com/documentation/enterprise/6/release�notes/topics/rg_cdh_6_download.html
(1)2008 年成立的 Cloudera 是最早将 Hadoop 商用的公司,为合作伙伴提供 Hadoop 的商用解决方案,主要是包括支持、咨询服务、培训。
(2)2009 年 Hadoop 的创始人 Doug Cutting 也加盟 Cloudera 公司。Cloudera 产品主要为 CDH,Cloudera Manager,Cloudera Support
(3)CDH 是 Cloudera 的 Hadoop 发行版,完全开源,比 Apache Hadoop 在兼容性,安全性,稳定性上有所增强。Cloudera 的标价为每年每个节点 10000 美元。
(4)Cloudera Manager 是集群的软件分发及管理监控平台,可以在几个小时内部署好一个 Hadoop 集群,并对集群的节点及服务进行实时监控。

Hortonworks Hadoop

官网地址:https://hortonworks.com/products/data-center/hdp/
下载地址:https://hortonworks.com/downloads/#data-platform
(1)2011 年成立的 Hortonworks 是雅虎与硅谷风投公司 Benchmark Capital 合资组建。
(2)公司成立之初就吸纳了大约 25 名至 30 名专门研究 Hadoop 的雅虎工程师,上述工程师均在 2005 年开始协助雅虎开发 Hadoop,贡献了 Hadoop80%的代码。
(3)Hortonworks 的主打产品是 Hortonworks Data Platform(HDP),也同样是 100%开源的产品,HDP 除常见的项目外还包括了 Ambari,一款开源的安装和管理系统。
(4)2018 年 Hortonworks 目前已经被 Cloudera 公司收购。

Hadoop 优势(4 高)

  • 高可靠性:Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元 素或存储出现故障,也不会导致数据的丢失。
  • 高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。
  • 高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处 理速度。
  • 高容错性:能够自动将失败的任务重新分配。

Hadoop组成

在 Hadoop1.x 时代,Hadoop中的MapReduce同时处理业务逻辑运算和资源的调度,耦合性较大。
在Hadoop2.x时代,增加 Yarn。Yarn只负责资源的调度,MapReduce只负责运算。
Hadoop3.x在组成上没有变化。

4hadoop的组成

HDFS架构概述

Hadoop Distributed File System,简称 HDFS,是一个分布式文件系统,由如下三个模块组成:

  • NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。
  • DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。
  • Secondary NameNode(2nn):每隔一段时间对NameNode元数据备份。

YARN架构概述

Yet Another Resource Negotiator 简称 YARN ,另一种资源协调者,是 Hadoop 的资源管理器,由如下四个部分组成:

  • ResourceManager(RM):整个集群资源(内存、CPU等)的老大
  • ApplicationMaster(AM):单个任务运行的老大
  • NodeManager(N M):单个节点服务器资源老大
  • Container:容器,相当一台独立的服务器,里面封装了任务运行所需要的资源,如内存、CPU、磁盘、网络等。
  • 5yarn架构概述

说明:

  • 客户端可以有多个
  • 集群上可以运行多个ApplicationMaster
  • 每个NodeManager上可以有多个Container

MapReduce 架构概述

MapReduce是Hadoop的计算框架,改框架将计算过程分为两个阶段:Map 和 Reduce

  • Map阶段:并行处理输入数据
  • Reduce阶段:对 Map 结果进行汇总

6mapreduce

HDFS、YARN、MapReduce三者关系

7三者关系图

参考:尚硅谷阳哥Hadoop:https://www.bilibili.com/video/BV1Qp4y1n7EN

大数据相关博客的目录