Pytorch-CUDA版本环境配置

Pytorch-CUDA版本环境配置
电脑如果是Windows平台下的Nvidia GPU的用户,需配置Pytorch的CUDA版本,分为三步:

1. 安装或更新NVIDA显卡驱动


2. 安装CUDA Toolkit + cudnn

1CUDA安装
CUDA Toolkit 安装前用以下命令查询机器上显卡最高支持的 CUDA 版本:
终端输入:
nvidia-smi
下图中 CUDA Version 12.9
如果你没有安装 cuda toolkit 或者需要升级,可以去官网下载:
2cuDNN安装

        NVIDIA CUDA深度神经网络库 (cuDNN) 是一个 GPU 加速的深度神经网络基元库,能够以高度优化的方式实现标准例程(如前向和反向卷积、池化层、归一化和激活层)。

        全球的深度学习研究人员和框架开发者都依赖 cuDNN 来实现高性能 GPU 加速。借助 cuDNN,研究人员和开发者可以专注于训练神经网络及开发软件应用,而不必花时间进行低层级的 GPU性能调整。cuDNN 可加速广泛应用的深度学习框架,包括 Caffe2、Keras、MATLAB、
MxNet、PaddlePaddle、PyTorch和 TensorFlow。

下载地址:cuDNN Archive | NVIDIA Developer

1 )下载并解压文件
2 )复制内容到 CUDA 安装路径
CUDA安装默认路径:
  • Windows:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
  • Linux/usr/local/cuda

3. 安装Pytorch

1 )在线安装
        打开 pytorch安装指导网站 ,选择合适的系统平台,关键是在 compute platform 选择一个不高 
于你电脑上的 CUDA Version ,复制命令安装。
  • pip install torch==版本号
  • conda install torch==版本号
# 使用 conda 安装
conda install python pytorch torchvision torchaudio pytorch-cuda = 11 .7 -c pytorch -c nvidia
# 使用 pip 安装
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
或者
pip install torch == 2 .0.0 + cu118 torchvision == 0 .15.0 + cu118 torchaudio == 2 .0.1 + cu118 -f https://download.pytorch.org/whl/torch_stable.html

2 )离线安装

pip install torch-2.0.1+cu118-cp310-cp310-win_amd64.whl

注意:
1 Pytorch torchvision 版本对应问题
如果你的 conda 解决环境很慢,可以试一试 pip 安装。
2 )使用镜像源
  • 使用镜像源:
    • pip install torch -i [镜像源]
    • conda install torch -c [镜像源]
  • 常用镜像源
    • 清华源:https://pypi.tuna.tsinghua.edu.cn/simple
    • 豆瓣源:https://pypi.doubanio.com/simple/
3 )安装验证 。 
import torch
# 打印出正在使用的PyTorch和CUDA版本。
print(torch.__version__)
print(torch.version.cuda)
# 测试GPU是否生效
print(torch.cuda.is_available())
3 )导入 PyToch
导入 PyTorch 并检查正在使用的版本
import torch
torch.__version__
>>> '2.0.1'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gorgor在码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值