Pytorch-CUDA版本环境配置
电脑如果是Windows平台下的Nvidia GPU的用户,需配置Pytorch的CUDA版本,分为三步:

1. 安装或更新NVIDA显卡驱动

2. 安装CUDA Toolkit + cudnn
1)CUDA安装
在
CUDA Toolkit
安装前用以下命令查询机器上显卡最高支持的
CUDA
版本:
终端输入:
nvidia-smi
下图中
CUDA Version
是
12.9
。

如果你没有安装
cuda toolkit
或者需要升级,可以去官网下载:

2)cuDNN安装
NVIDIA CUDA深度神经网络库 (cuDNN) 是一个 GPU 加速的深度神经网络基元库,能够以高度优化的方式实现标准例程(如前向和反向卷积、池化层、归一化和激活层)。
全球的深度学习研究人员和框架开发者都依赖 cuDNN 来实现高性能 GPU 加速。借助 cuDNN,研究人员和开发者可以专注于训练神经网络及开发软件应用,而不必花时间进行低层级的 GPU性能调整。cuDNN 可加速广泛应用的深度学习框架,包括 Caffe2、Keras、MATLAB、
MxNet、PaddlePaddle、PyTorch和 TensorFlow。
(
1
)下载并解压文件

(
2
)复制内容到
CUDA
安装路径
CUDA安装默认路径:
- Windows:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
- Linux:/usr/local/cuda

3. 安装Pytorch
(
1
)在线安装
于你电脑上的
CUDA Version
,复制命令安装。
- pip install torch==版本号
- conda install torch==版本号
# 使用 conda 安装conda install python pytorch torchvision torchaudio pytorch-cuda = 11 .7 -c pytorch -c nvidia# 使用 pip 安装pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117或者pip install torch == 2 .0.0 + cu118 torchvision == 0 .15.0 + cu118 torchaudio == 2 .0.1 + cu118 -f https://download.pytorch.org/whl/torch_stable.html
(
2
)离线安装
- 离线包下载地址:download.pytorch.org/whl/torch_stable.html
- 安装方式
pip install torch-2.0.1+cu118-cp310-cp310-win_amd64.whl
注意:
1
)
Pytorch
与
torchvision
版本对应问题

如果你的
conda
解决环境很慢,可以试一试
pip
安装。
2
)使用镜像源
- 使用镜像源:
- pip install torch -i [镜像源]
- conda install torch -c [镜像源]
- 常用镜像源
- 清华源:https://pypi.tuna.tsinghua.edu.cn/simple
- 豆瓣源:https://pypi.doubanio.com/simple/
3
)安装验证
。
import torch
# 打印出正在使用的PyTorch和CUDA版本。
print(torch.__version__)
print(torch.version.cuda)
# 测试GPU是否生效
print(torch.cuda.is_available())
(
3
)导入
PyToch
导入
PyTorch
并检查正在使用的版本
import torch
torch.__version__
>>> '2.0.1'