数学建模学习(20):求解微积分之函数的导数,超详细!

本文介绍了数学建模中微积分的重要性和应用,讲解了如何在MATLAB中求解函数的一阶、二阶及偏导数。通过多个具体案例,阐述了函数调用格式,并探讨了一元和二元偏导数的概念及其计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

数学建模并不是简单的编程,而是高度见高数中的知识与编程相结合,求解基本的微积分方程是很重要的,我在此猜想大家可能更加急切的想看下一个模型的讲解,但是我们不要忘了数学才是建模的基石和灵魂,因此在此篇我将会讲解微积分求解。之后再继续讲解模型。

函数调用格式

diff(s)-对s表达式求一阶导
diff(s,‘v’)-对表达式中自变量v求一阶导
diff(s,‘v’,n)对表达式s中的自变量v求n阶导

导数案例一

y=根号下1-2*e^x,
求解它的导数
matlab代码为

%导数案例一
syms x%创建符号标量变量、函数和矩阵变量
y=sqrt
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

川川菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值