数学建模学习(86):蜻蜓算法(DA)求解多元函数最值

本文介绍了蜻蜓算法(DA),一种受蜻蜓集群行为启发的优化算法。算法基于分离、列队、凝聚、觅食和逃离五种行为,适用于全局搜索和局部开发。在优化过程中,通过调整邻域半径和行为权重来平衡搜索。尽管存在易陷局部最优和收敛速度慢的缺点,蜻蜓算法因其简单的原理和较少的参数而受到关注。文章还展示了算法的实现步骤和案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、蜻蜓算法

1.1 算法介绍

蜻蜓(蜻蜓属)是奇特的昆虫。世界上有近3000种不同的昆虫。如下图所示,蜻蜓的生命周期包括两个阶段:若虫和成虫。它们一生中大部分的时间都是若虫期,经过变形变成成虫。

蜻蜓被认为是一种小型捕食者,它捕食自然界中几乎所有的小昆虫。若虫也捕食其他海洋昆虫,甚至是小鱼。有趣的是蜻蜓独特而罕见的群集行为。蜻蜓聚集的目的只有两个:狩猎和迁徙。前者称为静态(摄食) 群,后者称为 动态(迁徙)群

2015年提出的蜻蜓算法(DA)算法的主要灵感来源于静态和动态的集群行为。蜻蜓算法(DA)是在粒子群(PSO)的框架下开发的,因此作者提出两个向量:位置向量和步长向量 ,步长向量类似于 PSO 中的速度向量,位置向量表示蜻蜓运动的位置。蜻蜓算法通过改变它们的权重,从静态过渡到动态,即全局搜索过渡到局部开发来收敛,同时随着优化过程的进行,蜻蜓倾向于看到更多的蜻蜓来调整飞行路径。

在静态群体中,蜻蜓组成小群,在一小块区域内来回飞行,以捕食其他飞行猎物,如蝴蝶和蚊子。局部运动和飞行路径的突变是静态

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

川川菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值