背景
上有天堂,下在苏杭;五一假期,杭州西湖、西溪湿地、京杭大运河等著名景点,游人如织,作为享誉国内外的旅游胜地,杭州再次成为顶流。今年五一假期,西湖不断忙上热搜,据悉今年“五一”期间,杭州共接待游客 1051.47 万人次,接待外地来杭州游客 709 万人次,不仅西湖边人头攒动,西溪湿地、京杭运河水上游船也是游客爆满,坐船排队、登岛排队、拍照打卡也要排队,在欣赏美景放松心情的同时,稍不留神,手机落水的情景时有发生。为帮助游客解决落水手机的打捞问题,杭州主要景区工作人员,都配备有打捞神器,尽可能在较短的时间内解决游客的燃眉之急。在打捞落水物品的同时,打捞人员最为关心的就是物品在水中可能的掉落范围,物品掉落水中的范围不仅与物品自身特征有关,还与水域情况等各种因素有关。基于以上背景,请你们团队研究解决以下问题:
题目
问题一
问题 1:在西湖游船上掉落到西湖里一款华为 mate 60 pro 手机,请你们研究该款手机可能的掉落范围以及最优搜索策略,假设西湖的水是静水。
问题二
问题 2:在京杭大运河拱宸桥附近,从游船上掉落到水里一款华为 mate 60 pro 手机,请你们研究手机可能的掉落范围以及最优搜索策略。
问题三
问题 3:如果掉落在水里的是一张居民身份证,请你们重做问题 1-2。
问题四
问题 4:通过以上研究,针对掉落在水里的手机或身份证等物品,为提升快速打捞成功率,请给打捞人员提供相关建议。
思路:相关参数具体指自己假设一个合理值即可,只能模拟
问题 1:西湖游船上掉落到西湖里一款华为 Mate 60 Pro 手机,研究该款手机可能的掉落范围以及最优搜索策略,假设西湖的水是静水。
-
掉落模型的建立:
- 假设手机从一定高度掉落,考虑手机的初速度、掉落角度。
- 考虑空气阻力对手机下落过程的影响。
- 使用牛顿运动定律,建立手机下落过程的运动方程。
-
手机在水中运动:
- 手机进入水中后会继续下沉,需考虑手机密度、体积及其与水的相互作用力。
- 建立水中阻力模型,考虑粘性阻力和湍流阻力。
- 使用斯托克斯定律和其他相关流体力学公式,模拟手机在水中的运动轨迹。
-
搜索范围的确定:
- 综合分析手机在空气中和水中的运动轨迹,预测手机最终沉入水底的范围。
- 考虑风速、水流等环境因素的影响,对初步结果进行修正。
-
最优搜索策略:
- 基于预测的沉没范围,设计有效的搜索路径。
- 使用分段搜索、螺旋搜索等方法提高搜索效率。
- 考虑使用声纳设备、潜水员等辅助搜索工具。
问题 2:京杭大运河拱宸桥附近,从游船上掉落到水里一款华为 Mate 60 Pro 手机,研究手机可能的掉落范围以及最优搜索策略。
-
掉落模型的建立:
- 类似问题 1,考虑手机从船上掉落的初速度、角度及空气阻力。
-
水流影响的分析:
- 京杭大运河有水流,需分析水流速度及方向对手机运动轨迹的影响。
- 建立水流模型,模拟手机在水流中的运动。
-
手机在水中的运动:
- 与问题 1 类似,考虑手机在水中下沉的过程,但需加入水流的作用力。
- 使用流体力学公式,计算手机在不同深度的运动轨迹。
-
搜索范围的确定:
- 根据水流和手机在水中的运动模型,预测手机最终沉没的范围。
- 修正预测结果,考虑实际水流情况和其他环境因素。
-
最优搜索策略:
- 基于手机在水流中的运动预测,设计合适的搜索路径。
- 使用分段搜索、网格搜索等方法,结合水流分析进行优化。
- 考虑使用声纳、潜水员、打捞网等工具。
问题 3:如果掉落在水里的是一张居民身份证,请你们重做问题 1-2。
-
身份证掉落模型:
- 身份证质量较小,形状扁平,下落过程受空气阻力影响较大。
- 建立身份证掉落的运动模型,考虑其旋转、飘动等复杂运动形式。
-
身份证在水中的运动:
- 身份证进入水中后会受到浮力、阻力作用,运动轨迹较为复杂。
- 使用流体力学公式,模拟身份证在水中翻滚、漂移的过程。
-
搜索范围的确定:
- 结合身份证在空气和水中的运动模型,预测其最终沉入水底的位置。
- 考虑身份证轻且容易漂移,搜索范围可能比手机更大。
-
最优搜索策略:
- 基于身份证漂移范围,设计合适的搜索路径。
- 使用分段搜索、螺旋搜索等方法提高搜索效率。
- 考虑使用浮标、打捞网等工具。
问题 4:为提升快速打捞成功率,请给打捞人员提供相关建议。
-
打捞设备的改进:
- 提供适合不同物品(如手机、身份证)的打捞工具,考虑其体积、重量等特性。
- 推荐使用高效的声纳设备,快速定位沉入水底的物品。
-
搜索策略的优化:
- 针对不同类型物品,制定详细的搜索策略,如螺旋搜索、网格搜索等。
- 提供标准化的操作流程,确保打捞人员能够高效执行。
-
环境因素的考虑:
- 分析不同水域的特点,针对静水、流动水域制定不同的搜索方案。
- 考虑天气、风速、水流等因素对打捞工作的影响,灵活调整搜索策略。
-
培训与演练:
- 定期对打捞人员进行培训,提升其操作技能和应变能力。
- 进行模拟演练,积累实际操作经验,提高打捞成功率。
建模
要完整地解决问题一,需要建立手机掉落和在水中运动的数学模型,并制定相应的搜索策略。以下是问题一的详细建模过程:
问题 1:在西湖游船上掉落到西湖里一款华为 Mate 60 Pro 手机,研究该款手机可能的掉落范围以及最优搜索策略,假设西湖的水是静水。
1. 掉落模型的建立
1.1. 空气中运动
当手机从一定高度掉落时,需考虑其初速度、掉落角度以及空气阻力。假设手机从高度 (h) 处以初速度 (v_0) 和角度 (\theta) 掉落,手机在空气中的运动可以用以下方程描述:
-
水平运动:
x ( t ) = v 0 cos ( θ ) t x(t) = v_0 \cos(\theta) t x(t)=v0cos(θ)t -
垂直运动:
y ( t ) = h + v 0 sin ( θ ) t − 1 2 g t 2 y(t) = h + v_0 \sin(\theta) t - \frac{1}{2} g t^2 y(t)=h+v0sin(θ)t−21gt2
其中, g g g为重力加速度(约为 9.8 , m / s 2 {m/s}^2 m/s2)。
1.2. 空气阻力的考虑
空气阻力 ( F_d ) 与速度 ( v ) 相关,可以用以下公式表示:
F d = 1 2 ρ C d A v 2 F_d = \frac{1}{2} \rho C_d A v^2 Fd=21ρCdAv2
其中,( \rho ) 为空气密度,( C_d ) 为阻力系数,( A ) 为手机迎风面积。
考虑空气阻力时,运动方程变为:
m d 2 x d t 2 = − 1 2 ρ C d A ( d x d t ) 2 m \frac{d^2 x}{dt^2} = - \frac{1}{2} \rho C_d A \left( \frac{dx}{dt} \right)^2 mdt2d2x=−21ρCdA(dtdx)2
m d 2 y d t 2 = − m g − 1 2 ρ C d A ( d y d t ) 2 m \frac{d^2 y}{dt^2} = -mg - \frac{1}{2} \rho C_d A \left( \frac{dy}{dt} \right)^2 mdt2d2y=−mg−2