小白零基础学数学建模系列-Day5-非线性规划基础与案例分析

公众号:川川菜鸟 玩转大数据 CSDN:川川菜鸟

1. 定义

非线性规划(Nonlinear Programming, NLP)是运筹学中的一个重要分支,广泛应用于工程、经济、管理科学等领域。与线性规划不同,非线性规划中的目标函数和/或约束条件是非线性的,这使得问题的求解复杂度大大增加。在这篇文章中,我们将详细介绍非线性规划的基本概念,并通过实例探讨其在实际中的应用。

2. 非线性规划的基本概念

2.1 非线性规划的定义

非线性规划问题通常被定义为:

min ⁡   f ( x ) subject to g i ( x ) ≤ 0 , h j ( x ) = 0 , i = 1 , 2 , … , m , j = 1 , 2 , … , p , \min \ f(x) \quad \text{subject to} \quad g_i(x) \leq 0, \quad h_j(x) = 0, \quad i = 1, 2, \dots, m, \quad j = 1, 2, \dots, p, min f(x)subject togi(x)0,hj(x)=0,i=1,2,,m,j=1,2,,p,

其中,f(x) 是目标函数, g i ( x ) g_i(x) gi(x) 是不等式约束, h j ( x ) h_j(x) hj(x)是等式约束,(x\是决策变量向量。与线性规划不同,非线性规划中,f(x)、 g i ( x ) g_i(x) gi(x) ( h j ( x ) (h_j(x) (hj(x) 可以是任意非线性函数。

2.2 可行解与最优解

定义与区别

  • 可行解: 在非线性规划问题中,可行解是指满足所有约束条件的解集合中的任何一个解。它是所有可能解中的一个,未必是最佳的。
  • 最优解: 最优解是在可行解的集合中使目标函数达到最大或最小值的解。这个解在一定条件下是唯一的或存在多个相等的最优解。

性质与例子

  • 性质:

    • 所有最优解都是可行解,但并非所有可行解都是最优解。
    • 最优解的存在性与唯一性通常依赖于问题的凸性和约束条件的性质。
  • 例子: 考虑一个简单的二次规划问题,通过几何图形展示可行域与目标函数的交点即为最优解的直观理解。

2.3 凸性与非凸性

基本概念

  • 凸集与非凸集: 凸集中的任意两点之间的连线完全位于该集合内部,而非凸集则不满足此条件。
  • 凸函数与非凸函数: 函数是凸函数当且仅当其定义域是凸集且对任意两个点,其函数值的连线不低于函数曲线。

在非线性规划中的作用

  • 凸规划: 如果目标函数和约束函数都是凸的,问题即为凸规划,其局部最优解必然是全局最优解。
  • 非凸规划: 若存在非凸函数,问题可能有多个局部最优解,且全局最优解的求解更具挑战性。

实际应用: 在经济学中的消费选择模型中,效用函数通常假设为凸的,便于求解最优消费方案。

2.4 拉格朗日乘子法与KKT条件

拉格朗日乘子法

  • 定义: 是一种用于处理带有等式约束的优化问题的数学方法。通过构造拉格朗日函数,将原问题转化为无约束优化问题来求解。
  • 应用: 在经济学中,用于求解在预算约束下的最优消费或生产组合。

KKT条件

  • 基本原理: KKT条件是拉格朗日乘子法在带有不等式约束条件下的推广形式,是非线性规划中重要的必要最优性条件。
  • 详细描述: 包括一组必要条件:可行性、梯度消失条件、互补松弛条件等。
  • 应用实例: 使用KKT条件可以推导出经典的马尔可夫模型的状态转移概率优化。

3. 应用实例:保守型投资组合优化案例——分散化风险的多资产配置策略

概述

  • 工程设计: 在结构优化中,非线性规划用于最小化材料成本或重量,同时满足强度约束。
  • 经济与金融: 如投资组合优化问题,利用非线性规划模型来平衡收益与风险。
  • 数据科学: 用于支持向量机模型中优化超平面的构建。

3. 非线性规划的应用实例

案例本人设计

问题背景

考虑一个简单的投资组合优化问题。投资者计划在未来一年内将资金分配到三种不同的资产上,分别是股票、债券和房地产。每种资产的收益率和风险特征不同,投资者希望在控制整体风险的前提下,最大化投资组合的收益。

假设条件
  • 假设投资者有100万元的初始资金。
  • 假设股票、债券和房地产的预期年收益率分别为8%、4%和6%。
  • 假设股票、债券和房地产的投资风险(通过标准差衡量)分别为15%、5%和10%。
  • 股票的单独风险阈值为0.02。
  • 债券的单独风险阈值为0.01。
  • 房地产的单独风险阈值为0.015。
问题要求

在给定收益率和风险的情况下,求解最优的投资组合比例,使得总投资组合的收益最大化,同时控制总风险不超过某一阈值。

模型建立
  1. 目标函数:
    最大化  R = 0.08 x 1 + 0.04 x 2 + 0.06 x 3 \text{最大化 } R = 0.08x_1 + 0.04x_2 + 0.06x_3 最大化 R=0.08x1+0.04x2+0.06x3
    其中,x1、x2、x3分别表示股票、债券和房地产的投资比例。

  2. 约束条件:

    • 投资总额约束: x 1 + x 2 + x 3 = 1 x_1 + x_2 + x_3 = 1 x1+x2+x3=1
    • 非负约束: x 1 , x 2 , x 3 ≥ 0 x_1, x_2, x_3 \geq 0 x1,x2,x30
    • 风险控制约束: 投资组合的总风险(方差)不能超过某个阈值,即:
      Var ( R ) = 0.1 5 2 x 1 2 + 0.0 5 2 x 2 2 + 0.1 0 2 x 3 2 + 2 × Cov i j × x i x j ≤ σ max 2 \text{Var}(R) = 0.15^2x_1^2 + 0.05^2x_2^2 + 0.10^2x_3^2 + 2 \times \text{Cov}_{ij} \times x_ix_j \leq \sigma_{\text{max}}^2 Var(R)=0.152x12+0.052x22+0.102x32+2×Covij×xixjσmax2
      其中, σ max \sigma_{\text{max}} σmax 是投资者允许的最大风险, Cov i j   \text{Cov}_{ij}\ Covij 表示不同资产之间的协方差。
模型求解

参考代码如下:

import numpy as np
from scipy.optimize import minimize

# 定义收益率
R = np.array([0.08, 0.04, 0.06])

# 定义协方差矩阵
Cov = np.array([
    [0.15**2, 0.02, 0.03],
    [0.02, 0.05**2, 0.01],
    [0.03, 0.01, 0.10**2]
])

# 目标函数:考虑收益和分散化惩罚
def objective(x):
    return -np.dot(R, x) + 0.01 * np.sum(x**2)  # 增加分散化惩罚项

# 风险约束条件
def risk_constraint(x):
    return np.dot(x.T, np.dot(Cov, x)) - 0.015  # 控制总风险方差

# 投资比例约束条件:每种投资比例必须大于一个最小值
def minimum_investment_constraint(x):
    return x - 0.1  # 每种投资至少占10%

# 总资金约束条件
def total_investment_constraint(x):
    return np.sum(x) - 1

# 非负约束
bounds = [(0.1, 1), (0.1, 1), (0.1, 1)]  # 设置每种投资的下限为10%

# 初始猜测值
x0 = np.array([0.33, 0.33, 0.34])

# 定义约束
constraints = [
    {'type': 'eq', 'fun': total_investment_constraint},
    {'type': 'ineq', 'fun': risk_constraint},
    {'type': 'ineq', 'fun': minimum_investment_constraint}
]

# 调整优化选项
options = {'disp': True, 'maxiter': 1000, 'ftol': 1e-9, 'eps': 1e-8}

# 使用scipy的minimize函数求解
solution = minimize(objective, x0, method='SLSQP', bounds=bounds, constraints=constraints, options=options)

# 输出结果
if solution.success:
    x_opt = solution.x
    print(f'最优投资比例:股票: {x_opt[0]:.2f}, 债券: {x_opt[1]:.2f}, 房地产: {x_opt[2]:.2f}')
    print(f'最大化的收益率: {-solution.fun * 100:.2f}%')
else:
    print('优化未成功:', solution.message)

运行如下:

最优投资比例:股票: 0.80, 债券: 0.10, 房地产: 0.10
最大化的收益率: 6.74%

使用计算出的投资组合来验证总风险方差是否在设定的范围内。 计算组合的风险方差

risk_value = np.dot(x_opt.T, np.dot(Cov, x_opt))
print(f'组合的风险方差: {risk_value:.5f}')

如下:

组合的风险方差: 0.02273

上述的求解并不是最佳的,所以我们需要设计一个自动优化的方案求解,代码如下:

import numpy as np
from scipy.optimize import minimize

# 定义收益率
R = np.array([0.08, 0.04, 0.06])

# 定义协方差矩阵
Cov = np.array([
    [0.15**2, 0.02, 0.03],
    [0.02, 0.05**2, 0.01],
    [0.03, 0.01, 0.10**2]
])

# 目标函数:考虑收益和分散化惩罚
def objective(x, penalty_factor=0.01):
    return -np.dot(R, x) + penalty_factor * np.sum(x**2)  # 增加分散化惩罚项

# 风险约束条件
def risk_constraint(x):
    return np.dot(x.T, np.dot(Cov, x)) - 0.02  # 放宽总风险约束

# 投资比例约束条件:每种投资比例必须大于一个最小值
def minimum_investment_constraint(x):
    return x - 0.05  # 每种投资至少占5%

# 总资金约束条件
def total_investment_constraint(x):
    return np.sum(x) - 1

# 非负约束
bounds = [(0.05, 1), (0.05, 1), (0.05, 1)]  # 设置每种投资的下限为5%

# 初始猜测值
x0 = np.array([0.4, 0.3, 0.3])

# 定义约束
constraints = [
    {'type': 'eq', 'fun': total_investment_constraint},
    {'type': 'ineq', 'fun': risk_constraint},
    {'type': 'ineq', 'fun': minimum_investment_constraint}
]

# 调整优化选项
options = {'disp': True, 'maxiter': 1000, 'ftol': 1e-9, 'eps': 1e-8}

# 自动优化
best_solution = None
best_penalty = None
best_result = float('-inf')

# 扩大惩罚系数范围
for penalty_factor in np.linspace(0.001, 1, 200):
    solution = minimize(lambda x: objective(x, penalty_factor), x0, method='SLSQP', bounds=bounds, constraints=constraints, options=options)
    if solution.success:
        risk_value = np.dot(solution.x.T, np.dot(Cov, solution.x))
        if -solution.fun > best_result and risk_value <= 0.02:  # 确保风险在阈值内
            best_result = -solution.fun
            best_solution = solution.x
            best_penalty = penalty_factor

# 输出最优结果
if best_solution is not None:
    print(f'最优投资比例:股票: {best_solution[0]:.2f}, 债券: {best_solution[1]:.2f}, 房地产: {best_solution[2]:.2f}')
    print(f'最大化的收益率: {best_result * 100:.2f}%,惩罚系数: {best_penalty}')
else:
    print('未找到合适的解决方案')

运行如下:

最优投资比例:股票: 0.44, 债券: 0.22, 房地产: 0.33
最大化的收益率: 3.17%,惩罚系数: 0.09136180904522614
结果分析
  1. 投资组合分配
  • 股票:44%
  • 债券:22%
  • 房地产:33%

这个结果表明,优化后的投资组合分布比较均衡,三种资产都获得了较高的配置比例。具体来说,股票占比最高,接近一半,房地产和债券的配置比例也相对较高。这种分配体现了在收益最大化的目标下,同时控制风险,优化器倾向于多样化的投资策略。

  1. 最大化收益率
  • 最大化收益率:3.17%

该收益率相对较低,原因可能在于引入了分散化的惩罚项(惩罚系数为0.091),强制投资组合不集中于单一高收益资产,从而导致整体收益率降低。这表明在控制风险的前提下,系统更倾向于分散投资,从而降低了潜在收益。

  1. 惩罚系数
  • 惩罚系数:0.091

惩罚系数是优化过程中的关键参数。值越高,优化器越倾向于将投资组合的权重分散到更多的资产中,减少对单一资产的过度依赖。在当前的优化结果中,惩罚系数为0.091,表示系统在收益和风险之间达到了一个平衡点,同时引导投资组合向更广泛的分散化方向发展。

  1. 风险与收益权衡
    在当前的优化方案中,收益率虽然低于某些高风险的单一资产投资方案,但风险控制更加严谨,投资组合的风险被有效限制在了合理范围内。通过分散化策略,优化器降低了单一资产波动对整体收益的影响,从而实现了稳定的收益。

  2. 优化的合理性
    从结果来看,优化器成功找到了一个符合约束条件的投资组合,这个组合实现了收益最大化的目标,并且考虑了多样化投资的必要性。因此,当前的结果是合理的,尤其适合风险规避型投资者。

  3. 进一步优化的建议

  • 调整风险阈值:可以考虑适当放宽风险限制,允许更高的风险以提高收益率。
  • 重新评估收益预期:对各类资产的预期收益率进行重新评估,结合实际市场情况,调整模型中的收益率假设,以获得更现实的投资策略。
  • 动态调整惩罚系数:可以尝试动态调整惩罚系数,根据市场波动情况和投资者的风险偏好,调整投资组合的分散化程度。
  1. 总结
    本次优化结果展示了一个相对保守且分散化的投资策略,符合风险控制和收益适中的目标。虽然最终的收益率不高,但通过引入多样化的资产配置,有效降低了整体投资组合的风险,是一种较为稳健的投资策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

川川菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值