分析:刚开始以为用上面卢卡斯公式结合欧拉定理对求出C(n,m),但p要求为素数,而999911659-1并非素数;
(求C(n, m)%p的值, p = p1p2…pk. pi是质数。
先求出C(n, m)%pi的值, 然后这就是一个同余的式子。 用中国剩余定理求解.)
#include <iostream>
#include <stdio.h>
#include <string>
#include<cstring>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e4+5;
ll mod=999911659;
// 2, 3, 4679, 35617
ll quick_pow(ll a,ll b,ll p){ //快速幂
ll ans=1;
while (b){
if(b&1) ans=ans*a%p;
a=a*a%p; b>>=1;
}
return ans;
}
ll Matx(ll a,ll b,ll p){ // 快乘
a=(a%p+p)%p; b=(b%p+p)%p; ll ans=0;
while (b){
if(b&1) ans=(ans+a)%p;
a=(a+a)%p; b>>=1;
}
return ans%p;
}
ll C(ll n,ll m,ll p){ // 组合数
if(m>n) return 0;
ll ans=1;
for(int i=1;i<=m;i++){
ll a=(n-i+1)%p; ll b=i%p;
ans=(ans*a*quick_pow(b,p-2,p))%p;
}
return ans%p;
}
ll lucas(ll n,ll m,ll p){ //卢卡斯
if(!m) return 1;
return C(n%p,m%p,p)*lucas(n/p,m/p,p)%p;
}
void exgcd(ll a,ll b,ll &x,ll &y){ //拓展欧几里得求逆元
if(!b){
x=1,y=1;
return;
}
exgcd(b,a%b,x,y);
int t=x; x=y; y=t-(a/b)*y;
}
ll CRT(ll a[],ll m[],ll n){ // 中国剩余定理
ll M=1,ans=0;
for(int i=0;i<n;i++) M*=m[i];
for(int i=0;i<n;i++){
ll x,y; ll Mi=M/m[i];
exgcd(Mi,m[i],x,y);
ans=(ans+Matx(Matx(Mi,x,M),a[i],M)%M)%M;
}
return ans;
}
int main()
{
ll a,n,m,s[4]={0},mo=mod-1,tot=0;
for(int i=2;i<=mo;i++){ // 筛质因子
bool flag=1;
while (mo%i==0) {mo/=i;s[tot]=i;flag=0;}
if(!flag) tot++;
}
while (~scanf("%lld%lld%lld",&a,&n,&m)){
ll b[4];
for(int i=0;i<4;i++)
b[i]=lucas(n,m,s[i]); // 同余系
ll ans=CRT(b,s,4);
ans=quick_pow(a,ans,mod);
printf("%lld\n",ans);
}
return 0;
}