线性代数的几何意义简单总结

本文详细解释了矩阵在表示基向量、线性变换、行列式的几何含义、逆矩阵的解方程组作用、秩与空间维数的关系以及零空间和特征向量的概念。通过实例展示了非方阵如何实现不同维度间的变换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵的意义

矩阵既可以理解为一组(列)基向量,也可以理解为线性变换。

某个向量左乘矩阵表示向量在用新的基向量表示对应在原始坐标系下的坐标,也可以视为经过线性变换后的坐标。

原始基向量都是单位矩阵,其他矩阵都是原始基向量经过变换后的基向量。

线性变换(二维为例):

  1. 原点不动
  2. 网格仍为直线(网格线平行等间距)

行列式的意义

二维中,其绝对值表示一个(两个不共线的向量构成)区域经过线性变换后的面积与之前的面积之比,正负可以理解为平面空间是否发生了反转,类似于纸张的翻面。特别地,行列式为 0 0 0,说明任意区域经过矩阵的变换后面积是之前的 0 0 0 倍,即变换后的全部向量均共线,亦将二维平面压缩至一维直线。

三维中,其绝对值表示一个区域经过线性变换后的体积与之前的体积之比,正负可以理解为三个基向量是可以通过左手准则表达还是右手准则表达。特别地,行列式为 0 0 0,说明任意区域经过矩阵的变换后体积是之前的 0 0 0 倍,即变换后的全部向量均共面,亦将三维平面压缩至平面或直线。

逆矩阵的几何意义:

左乘矩阵相当于是对原始向量进行线性变换,而左乘逆矩阵相当于将变换后的向量恢复到原来的状态。

解方程组的意义

A x = v Ax=v

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不牌不改

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值