题目描述
给定一个 n × n 的棋盘,棋盘中有一些位置不能放皇后。
现在要向棋盘中放入 n 个黑皇后和 n 个白皇后,使任意的两个黑皇后都不在同一行、同一列或同一条对角线上;
任意的两个白皇后都不在同一行、同一列或同一条对角线上。
问总共有多少种放法?n 小于等于 8。
输入格式
输入的第一行为一个整数 n,表示棋盘的大小。
接下来 n 行,每行 n 个 0 或 1 的整数,整数为 1,表示该位置可以放皇后;整数为 0,表示该位置不可以放皇后。
输出格式
输出一个整数,表示总共有多少种放法。
样例输入
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
2
题解
DFS:
解题思路
:先放置白皇后,白皇后放置完毕后,再放置黑皇后。
#include <iostream>
using namespace std;
const int N = 110;
int n, ans;
int g[N][N];
int white[N][N];
int col1[N], dg1[N], udg1[N];
int col2[N], dg2[N], udg2[N];
void dfs_Black(int u)
{
if(u == n + 1)
{
ans ++;
return;
}
for (int i = 1; i <= n; i ++)
{
if(white[u][i]) continue;
if(col2[i] || dg2[i - u + n] || udg2[i + u] || !g[u][i]) continue;
col2[i] = dg2[i - u + n] = udg2[i + u] = true;
dfs_Black(u + 1);
col2[i] = dg2[i - u + n] = udg2[i + u] = false;
}
}
void dfs_White(int u)
{
if(u == n + 1)
{
dfs_Black(1);
return;
}
for (int i = 1; i <= n; i ++)
{
if(col1[i] || dg1[i - u + n] || udg1[i + u] || !g[u][i]) continue;
white[u][i] = true;
col1[i] = dg1[i - u + n] = udg1[i + u] = true;
dfs_White(u + 1);
col1[i] = dg1[i - u + n] = udg1[i + u] = false;
white[u][i] = false;
}
}
int main()
{
cin >> n;
for (int i = 1; i <= n; i ++)
for (int j = 1; j <= n; j ++)
cin >> g[i][j];
dfs_White(1);
cout << ans << endl;
return 0;
}