基础练习(VIP)——2n皇后问题

题目描述
给定一个 n × n 的棋盘,棋盘中有一些位置不能放皇后。

现在要向棋盘中放入 n 个黑皇后和 n 个白皇后,使任意的两个黑皇后都不在同一行、同一列或同一条对角线上;

任意的两个白皇后都不在同一行、同一列或同一条对角线上。

问总共有多少种放法?n 小于等于 8。

输入格式
输入的第一行为一个整数 n,表示棋盘的大小。
接下来 n 行,每行 n 个 0 或 1 的整数,整数为 1,表示该位置可以放皇后;整数为 0,表示该位置不可以放皇后。

输出格式
输出一个整数,表示总共有多少种放法。

样例输入
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

样例输出
2


题解
DFS:

解题思路:先放置白皇后,白皇后放置完毕后,再放置黑皇后。

#include <iostream>
using namespace std;

const int N = 110;

int n, ans;
int g[N][N];
int white[N][N];
int col1[N], dg1[N], udg1[N];
int col2[N], dg2[N], udg2[N];

void dfs_Black(int u)
{
	if(u == n + 1)
	{
		ans ++;
		return;
	}
	
	for (int i = 1; i <= n; i ++)
	{
		if(white[u][i]) continue;
		if(col2[i] || dg2[i - u + n] || udg2[i + u] || !g[u][i]) continue;
		
		col2[i] = dg2[i - u + n] = udg2[i + u] = true;
		dfs_Black(u + 1);
		col2[i] = dg2[i - u + n] = udg2[i + u] = false;	
	}
}

void dfs_White(int u)
{
	if(u == n + 1)
	{
		dfs_Black(1);
		return;
	}
	
	for (int i = 1; i <= n; i ++)
	{
		if(col1[i] || dg1[i - u + n] || udg1[i + u] || !g[u][i]) continue;
		
		white[u][i] = true;
		col1[i] = dg1[i - u + n] = udg1[i + u] = true;
		dfs_White(u + 1);
		col1[i] = dg1[i - u + n] = udg1[i + u] = false;	
		white[u][i] = false;
	}
}

int main()
{
	cin >> n;
	
	for (int i = 1; i <= n; i ++)
		for (int j = 1; j <= n; j ++)
			cin >> g[i][j];
			
	dfs_White(1);
	
	cout << ans << endl;
	return 0;		
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值