问题描述
给定一个 n 个顶点,m 条边的有向图(其中某些边权可能为负,但保证没有负环)。
请你计算从1 号点到其他点的最短路(顶点从 1 到 n 编号)。
输入格式
第一行两个整数 n, m。
接下来的 m 行,每行有三个整数 u, v, l,表示 u 到 v 有一条长度为 l 的边。
输出格式
共 n - 1 行,第 i 行表示 1 号点到 i + 1 号点的最短路。
样例输入
3 3
1 2 -1
2 3 -1
3 1 2
样例输出
-1
-2
数据范围
对于 10% 的数据,n = 2,m = 2。
对于 30% 的数据,n ≤ 5,m ≤ 10。
对于 100% 的数据,1 ≤ n ≤ 20000,1 ≤ m ≤ 200000,-10000 ≤ l ≤ 10000,保证从任意顶点都能到达其他所有顶点。
题解:
spfa + 链式前向星
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
const int N = 20010, M = 200010;
int n, m;
bool st[N];
int dist[N];
int h[N], e[M], w[M], ne[M], idx;
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}
void spfa()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
queue<int> q;
q.push(1);
st[1] = true;
while(q.size())
{
int t = q.front();
q.pop();
st[t] = false;
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if(dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
if(!st[j])
{
q.push(j);
st[j] = true;
}
}
}
}
}
int main()
{
cin >> n >> m;
memset(h, -1, sizeof h);
while(m --)
{
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
}
spfa();
for (int i = 2; i <= n; i ++) cout << dist[i] << endl;
return 0;
}