算法训练 ——最短路

问题描述
给定一个 n 个顶点,m 条边的有向图(其中某些边权可能为负,但保证没有负环)。

请你计算从1 号点到其他点的最短路(顶点从 1 到 n 编号)。

输入格式
第一行两个整数 n, m。
接下来的 m 行,每行有三个整数 u, v, l,表示 u 到 v 有一条长度为 l 的边。

输出格式
共 n - 1 行,第 i 行表示 1 号点到 i + 1 号点的最短路。

样例输入
3 3
1 2 -1
2 3 -1
3 1 2

样例输出
-1
-2

数据范围
对于 10% 的数据,n = 2,m = 2。
对于 30% 的数据,n ≤ 5,m ≤ 10。
对于 100% 的数据,1 ≤ n ≤ 20000,1 ≤ m ≤ 200000,-10000 ≤ l ≤ 10000,保证从任意顶点都能到达其他所有顶点。


题解:
spfa + 链式前向星

#include <iostream>
#include <cstring>
#include <queue>
using namespace std;

const int N = 20010, M = 200010;

int n, m;
bool st[N];
int dist[N];
int h[N], e[M], w[M], ne[M], idx;

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}

void spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    
    queue<int> q;
    q.push(1);
    st[1] = true;
    
    while(q.size())
    {
        int t = q.front();
        q.pop();
        st[t] = false;
        
        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if(dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if(!st[j]) 
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
}

int main()
{
    cin >> n >> m;
    
    memset(h, -1, sizeof h);
    
    while(m --)
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
    }
    
    spfa();
    
    for (int i = 2; i <= n; i ++) cout << dist[i] << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值