问题描述
小明公司的办公区有一条长长的走廊,由 N 个方格区域组成,如下图所示。
走廊内部署了 K 台扫地机器人,其中第 i 台在第 Ai 个方格区域中。
已知扫地机器人每分钟可以移动到左右相邻的方格中,并将该区域清扫干净。
请你编写一个程序,计算每台机器人的清扫路线,使得
- 它们最终都返回出发方格,
- 每个方格区域都至少被清扫一遍,
- 从机器人开始行动到最后一台机器人归位花费的时间最少。
注意多台机器人可以同时清扫同一方块区域,它们不会互相影响。
输出最少花费的时间。
在上图所示的例子中,最少花费时间是 6。
- 第一台路线:2 - 1 - 2 - 3 - 4 - 3 - 2,清扫了 1、2、3、4 号区域。
- 第二台路线:5 - 6 - 7 - 6 - 5,清扫了 5、6、7。
- 第三台路线:10 - 9 - 8 - 9 - 10,清扫了 8、9 和 10。
输入格式
第一行包含两个整数 N 和 K。
接下来 K 行,每行一个整数 Ai 。
输出格式
输出一个整数表示答案。
样例输入
10 3
5
2
10
样例输出
6
数据范围
对于 30% 的评测用例,
1
≤
K
<
N
≤
10
1 ≤ K < N ≤ 10
1≤K<N≤10
对于 60% 的评测用例,
1
≤
K
<
N
≤
1000
1 ≤ K < N ≤ 1000
1≤K<N≤1000
对于所有评测用例,
1
≤
K
<
N
≤
100000
,
1
≤
A
i
≤
N
1 ≤ K < N ≤ 100000,1 ≤ Ai ≤ N
1≤K<N≤100000,1≤Ai≤N
题解
二分:
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int n, k;
int p[N];
bool check(int x)
{
int R = 0; // R 表示机器人已经扫到的区域右边界
for (int i = 0; i < k; i ++)
{
if(p[i] - x > R) return false; // 不能无缝衔接扫地区域,则一定失败
else
{
if(p[i] <= R) R = p[i] + x - 1; // 在区域内,则从本区域开始,能扫到的最远区域
else R += x; // 在区域外,则直接从边界累加
}
}
return R >= n; // 判断是否能扫完整个区域
}
int main()
{
cin >> n >> k;
for (int i = 0; i < k; i ++) cin >> p[i];
sort(p, p + k);
int l = 0, r = n;
while(l < r)
{
int mid = l + r >> 1; // 二分机器人的扫地范围
if(check(mid)) r = mid;
else l = mid + 1;
}
cout << 2 * l - 2 << endl; // 花费时间 = 2 × (扫地范围 - 1)
return 0;
}
ps:花费时间 = 2 × (扫地范围 - 1)
,如果不明白这句话,可以画图模拟一下。