第十一届蓝桥杯 ——作物杂交

问题描述
作物杂交是作物栽培中重要的一步。

已知有 N N N 种作物 (编号 1 1 1 N N N ),第 i i i 种作物从播种到成熟的时间为 T i Ti Ti

作物之间两两可以进行杂交,杂交时间取两种中时间较长的一方。

如作物 A A A 种植时间为 5 5 5 天,作物 B B B 种植时间为 7 7 7 天,则 A B AB AB 杂交花费的时间为 7 7 7 天。

作物杂交会产生固定的作物,新产生的作物仍然属于 N N N 种作物中的一种。

初始时,拥有其中 M M M 种作物的种子 (数量无限,可以支持多次杂交),同时可以进行多个杂交过程。

求问对于给定的目标种子,最少需要多少天能够得到。

如存在 4 4 4 种作物 A B C D ABCD ABCD,各自的成熟时间为 5 5 5 天、 7 7 7 天、 3 3 3 天、 8 8 8 天。

初始拥有 A B AB AB 两种作物的种子,目标种子为 D D D,已知杂交情况为 A × B → C , A × C → D A × B → C,A × C → D A×BCA×CD

则最短的杂交过程为:

  • 1 1 1 天到第 7 7 7 天 (作物 B 的时间), A × B → C A × B → C A×BC
  • 8 8 8 天到第 12 12 12 天 (作物 A 的时间), A × C → D A × C → D A×CD
  • 花费 12 12 12 天得到作物 D D D 的种子。

输入描述
1 1 1 行包含 4 4 4 个整数 N , M , K , T N, M, K, T N,M,K,T N N N 表示作物种类总数 (编号 1 1 1 N N N), M M M 表示初始拥有的作物种子类型数量, K K K 表示可以杂交的方案数, T T T 表示目标种子的编号。
2 2 2 行包含 N N N 个整数,其中第 i i i 个整数表示第 i i i 种作物的种植时间 T i Ti Ti ( 1 ≤ T ≤ 100 1≤T≤100 1T100)
3 3 3 行包含 M M M 个整数,分别表示已拥有的种子类型 K j Kj Kj ( 1 ≤ K j ≤ M 1 ≤ Kj ≤ M 1KjM), K j Kj Kj 两两不同。
4 4 4 K + 3 K+ 3 K+3 行,每行包含 3 3 3 个整数 A , B , C A, B,C A,B,C,表示第 A A A 类作物和第 B B B 类作物杂交可以获得第 C C C 类作物的种子。

输出描述
输出一个整数,表示得到目标种子的最短杂交时间。

样例输入
6 2 4 6
5 3 4 6 4 9
1 2
1 2 3
1 3 4
2 3 5
4 5 6

样例输出
16

样例说明
1 1 1 天至第 5 5 5 天,将编号 1 1 1 与编号 2 2 2 的作物杂交,得到编号 3 3 3 的作物种子。
6 6 6 天至第 10 10 10 天,将编号 1 1 1 与编号 3 3 3 的作物杂交,得到编号 4 4 4 的作物种子。
6 6 6 天至第 9 9 9 天,将编号 2 2 2 与编号 3 3 3 的作物杂交,得到编号 5 5 5 的作物种子。
11 11 11 天至第 16 16 16 天,将编号 4 4 4 与编号 5 5 5 的作物杂交,得到编号 6 6 6 的作物种子。

总共花费 16 16 16 天。

数据范围
对于所有评测用例, 1 ≤ N ≤ 2000 , 2 ≤ M ≤ N , 1 ≤ K ≤ 1 0 5 , 1 ≤ T ≤ N 1 ≤ N≤ 2000, 2≤ M ≤ N, 1 ≤ K ≤10^5, 1 ≤ T ≤ N 1N2000,2MN,1K105,1TN,保证目标种子一定可以通过杂交得到。


题解
树形DP:

f[u]:得到种子 u 的最短杂交时间。

#include <bits/stdc++.h>
using namespace std;

const int INF = 0x3f3f3f3f;

typedef pair<int, int> PII;

int N, M, K, T;
vector<PII> e[2010];
int Time[2010], Type[2010], f[2010];

void dfs(int u)
{
	if(f[u] != -1) return;
	f[u] = 0;
	int minv = INF;
	for (int i = 0; i < e[u].size(); i ++)
	{
		int a = e[u][i].first, b = e[u][i].second;
		dfs(a), dfs(b);
		minv = min(minv, max(f[a], f[b]) + max(Time[a], Time[b]));
	}
	if(minv != INF) f[u] += minv;
}

int main()
{
	memset(f, -1, sizeof f);
	cin >> N >> M >> K >> T;
	for (int i = 1; i <= N; i ++) cin >> Time[i];
	for (int i = 1; i <= M; i ++) cin >> Type[i];
	
	while(K --)
	{
		int a, b, c;
		cin >> a >> b >> c;
		e[c].push_back({a, b});
	}
	
	dfs(T);
	
	cout << f[T] << endl;
	return 0;
}

蓝桥杯C/C++省赛历年题

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值