题目描述
小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题。
一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题。
于是当日课后,小明就向老师提出了这个问题:
一株奇怪的花卉,上面共连有 N N N 朵花,共有 N − 1 N-1 N−1条枝干将花儿连在一起,并且未修剪时每朵花都不是孤立的。
每朵花都有一个“美丽指数”,该数越大说明这朵花越漂亮,也有“美丽指数”为负数的,说明这朵花看着都让人恶心。
所谓“修剪”,意为:去掉其中的一条枝条,这样一株花就成了两株,扔掉其中一株。
经过一系列“修剪“之后,还剩下最后一株花(也可能是一朵)。
老师的任务就是:通过一系列“修剪”(也可以什么“修剪”都不进行),使剩下的那株(那朵)花卉上所有花朵的“美丽指数”之和最大。
老师想了一会儿,给出了正解。小明见问题被轻易攻破,相当不爽,于是又拿来问你。
输入格式
第一行一个整数
N
(
1
≤
N
≤
16000
)
N(1 ≤ N ≤ 16000)
N(1≤N≤16000)。表示原始的那株花卉上共
N
N
N 朵花。
第二行有
N
N
N 个整数,第
i
i
i 个整数表示第
i
i
i 朵花的美丽指数。
接下来
N
−
1
N-1
N−1 行每行两个整数
a
,
b
a,b
a,b,表示存在一条连接第
a
a
a 朵花和第
b
b
b 朵花的枝条。
输出格式
一个数,表示一系列“修剪”之后所能得到的“美丽指数”之和的最大值。保证绝对值不超过
2147483647
2147483647
2147483647。
样例输入
7
-1 -1 -1 1 1 1 0
1 4
2 5
3 6
4 7
5 7
6 7
样例输出
3
数据范围
对于
60
60
60% 的数据,有
N
≤
1000
N≤1000
N≤1000;
对于
100
100
100% 的数据,有
N
≤
16000
N≤16000
N≤16000。
题解:树形DP
f[u]
:以 u
为根的最大子树和。
#include <bits/stdc++.h>
using namespace std;
const int N = 16010;
int n;
int w[N], f[N];
vector<int> e[N];
int dfs(int u, int fa)
{
f[u] = w[u];
for (int i = 0; i < e[u].size(); i ++)
{
int j = e[u][i];
if(j == fa) continue;
f[u] = max(f[u], f[u] + dfs(j, u));
}
return f[u];
}
int main()
{
cin >> n;
for (int i = 1; i <= n; i ++) cin >> w[i];
for (int i = 1; i < n; i ++)
{
int a, b;
cin >> a >> b;
e[a].push_back(b);
e[b].push_back(a);
}
dfs(1, -1);
int ans = -(1 << 30);
for (int i = 1; i <= n; i ++) ans = max(ans, f[i]);
cout << ans << endl;
return 0;
}