服务器Log日志分析学习笔记

# todo 服务器日志分析案例
分析知识点

1.df查看命令
df.semple(5)#随机采样5条
df.shape#查看数据条数
df.dtypes#看到时间不是时间对象而是字符串
df.info()#查看内存占用情况  总共 可以替代dtype
df['api'].describe()#查看接口是否相同  unique不同 freq重复
df.interval.describe()#std标准差 0无浮动  平均值是60  unique查看有多少种类型
df.interval.unique()#判断有无不同数据

2.删除命令
df=df.drop('api',axis=1)#优化内存 指定删除
df=df.drop(['id','interval'],axis=1)

3.时间索引和截取
df.index
df.index=pd.to_datetime(df.created_at)#转换字符串索引为时间类型 查找更快更方便
df['2019-5-1']
#切出一天数据 绘制出一天内接口调用情况
df['2019-5-1']['count'].plot()
#凌晨无人访问 下午2,3点第一个访问高峰 晚上8,9点 第二个访问高峰  #为凸显数据特征 重新以小时为单位采样
df2=df['2019-5-1']

4.重采样
df2=df2[['count']].resample['1H'].mean()#注意重采样是df格式
df2['count'].plot()
#重采样 为20分钟 重绘图
data=df['2019-5-1'].resample('20T').mean
data[['res_time_sum','res_time_min','res_time_max','res_time_avg']].plot()#注意上面已经筛选过了
#得到高峰时段结论

5.折线图
#折线图 直方图 查看业务高峰时段不清晰  不如采用柱状图
plt.figure(figsize=(10,3))#放大图像 单位英寸
df2['count'].plot(kind='bar')
plt.xticks(rotation=60)#图注释文字旋

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 鲸 设计师: meimeiellie
应支付0元
点击重新获取
扫码支付

支付成功即可阅读