题目链接如下所示:
这题将每一行当成一个叶子节点的区间去维护。我们维护的是区间内的点的最大宽度。
当然,h和n在建树的时候取最小的那一个,因为如果n比较小的话,其实我们不需要那么多叶子节点,这在更新查询的时候也是要注意区间的范围是什么。
代码如下所示:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<ctime>
#include<vector>
#include<algorithm>
#include<cstring>
#include<set>
#include<map>
#include<queue>
#include<string>
#include<cmath>
#include<climits>
using namespace std;
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
const int MAXN=200100;
const int INF=0x3f3f3f3f;
struct {
int l;
int r;
int sum;
}tree[MAXN<<2];
int h,w,n;
int val[MAXN];
void push_up(int rt){
// tree[rt].sum=tree[rt<<1].sum+tree[rt<<1|1].sum;
tree[rt].sum= max(tree[rt<<1].sum,tree[rt<<1|1].sum);
}
void build(int l,int r,int rt){
if (l==r) {
tree[rt].sum=w;
return;
}
int mid=(l+r)>>1;
build(lson);
build(rson);
push_up(rt);
}
int update(int len,int l,int r,int rt){
if (l==r){
if (tree[rt].sum>=len){
tree[rt].sum-=len;
}else{
return -1;
}
return l;
}
int ans=-1;
int mid=(l+r)>>1;
// cout<<"rt:"<<rt<<endl;
// cout<<"left sum:"<<tree[rt<<1].sum<<endl;
// cout<<"right sum:"<<tree[rt<<1|1].sum<<endl;
// cout<<"("<<l<<","<<r<<")"<<endl;
if (tree[rt<<1].sum>=len){
ans=update(len,lson);
}else if (tree[rt<<1|1].sum>=len){
ans=update(len,rson);
}
push_up(rt);
return ans;
}
int main()
{
while (scanf("%d %d %d",&h,&w,&n)!=EOF){
// cout<<"h,w,n:"<<h<<","<<w<<","<<n<<endl;
if (h>n) h=n;
build(1,h,1);
// for (int i = 1; i <= 8; ++i) {
// cout<<"rt:"<<i<<",sum:"<<tree[i].sum<<endl;
// }
for (int i = 0; i < n; ++i) {
scanf("%d",&val[i]);
// cout<<val[i]<<endl;
printf("%d\n",update(val[i],1,h,1));
}
}
return 0;
}
本文介绍了一种数据结构实现方法,通过构建区间树来高效处理区间内最大值的更新和查询操作。适用于需要动态调整区间内数值并快速获取最大值的应用场景。
802

被折叠的 条评论
为什么被折叠?



