问题描述
长方形
小明今天突发奇想,想从一张用过的纸中剪出一个长方形。
为了简化问题,小明做出如下规定:
(1)这张纸的长宽分别为 n,mn,m。小明讲这张纸看成是由n\times mn×m个格子组成,在剪的时候,只能沿着格子的边缘剪。
(2)这张纸有些地方小明以前在上面画过,剪出来的长方形不能含有以前画过的地方。
(3)剪出来的长方形的大小没有限制。
小明看着这张纸,想了好多种剪的方法,可是到底有几种呢?小明数不过来,你能帮帮他吗?
思路
单调栈适合解决在一个连续区间内找左边和右边第一个比它小/大的元素,形成类似一个凸或凹的抛物线/,/
分成左右两边,左长+1右长+1h=选择第i列的总方案数
代码
#include <iostream>
#include <stack>
using namespace std;
const int maxn=1e5+10;
int n,m,h[maxn];
char ch;
long long ans;// 记得开long long
void ddz(){
stack<int> s;
int i=1;
while(i<=m+1){// (]左开右闭
while(!s.empty()&&h[s.top()]>=h[i]){// 加了=这个栈就是严格单增的,=栈顶元素的不可以进来,去掉等号就不是严格单增的了,栈内可以出现多个相等的元素下标
int top=s.top();
s.pop();
ans+=s.empty()?(top-0)*(i-top)*h[top]:(top-s.top())*(i-top)*h[top];//i左边的长*i右边的长*高度,这里使用s.top时要注意是否为空
// 注意当弹出来当前元素后栈就为空后,并不是左边就没有元素了所以左边长度就只能为1,ans+=1*(top-s.top())*h[top]
// 因为我们这是一个单增的栈,若这个元素为栈底元素并不代表前面就没有元素了,也可能前面的元素都比当前元素大,
// 所以前面还有top-1个元素,共有top个长度选择(0)
if(s.empty()) cout<<"top:"<<top<<" ans+="<<top*(i-top)*h[top]<<endl;
else cout<<"top:"<<top<<" ans+="<<(top-s.top())*(i-top)*h[top]<<endl;
}
s.push(i);
i++;
// cout<<i<<endl;
}
}
int main(){
cin>>n>>m;
h[m+1]=-1;// 增加一个哨兵,好处理ddz最后没有完全弹完的情况
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>ch;
if(ch=='.') h[j]=h[j]+1;
else h[j]=0;
}
ddz();
cout<<ans<<endl;
}
cout<<ans;
return 0;
}