Python数据分析案例51——基于K均值的客户聚类分析可视化

案例背景

本次案例带来的是最经典的K均值聚类,对客户进行划分类别的分析,其特点是丰富的可视化过程。这个经典的小案例用来学习或者课程作业在合适不过了。


数据介绍

数据集如下:

        

客户的编码,性别,年龄,年收入,还有一个花费分,可能就是消费的越多这个分越高。

下面我们会对这些维度进行分析和可视化,然后进行K均值聚类。主要有这些步骤:

  • 导入库。
  • 数据探索。
  • 数据可视化。
  • 使用 K-Means 进行聚类。
  • 集群的选择。
  • 绘制聚类边界和聚类。
  • 聚类的 3D 图

下面开始,当然,需要本期数据案例和全部代码文件的同学还是可以参考:客户聚类​​​​​​​


代码实现

导入库

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt 
import seaborn as sns 
import plotly as py
import plotly.graph_objs as go
from sklearn.cluster import KMeans
import warnings
import os
warnings.filterwarnings("ignore")

#print(os.listdir("../input"))

数据探索

读取数据

df = pd.read_csv('Mall_Customers.csv')
df.head()

查看数据形状

df.shape

200个样本

描述性统计

df.describe()

查看数据类型

df.dtypes

可以看到编号,年龄,收入,消费分都是数值型数据,年龄是类别变量。

查看是否有空值。

df.isnull().sum()

没有缺失值。


数据可视化

设置一下画图风格

plt.style.use('fivethirtyeight')

直方图

画年龄,收入,消费的直方图

plt.figure(1 , figsize = (15 , 6))
n = 0 
for x in ['Age' , 'Annual Income (k$)' , 'Spending Score (1-100)']:
    n += 1
    plt.subplot(1 , 3 , n)
    plt.subplots_adjust(hspace =0.5 , wspace = 0.5)
    sns.distplot(df[x] , bins = 20)
    plt.title('Distplot of {}'.format(x))
plt.show()

可以看到分布都还很正常,类似正态,没有极端分布。

性别统计柱状图

plt.figure(1 , figsize = (15 , 5))
sns.countplot(y = 'Gender' , data = df)
plt.show()

女性比男性多。

画出年龄,收入,花费等关系

画出他们两两的散点图和回归线

plt.figure(1 , figsize = (15 , 7))
n = 0 
for x in ['Age' , 'Annual Income (k$)' , 'Spending Score (1-100)']:
    for y in ['Age' , 'Annual Income (k$)' , 'Spending Score (1-100)']:
        n += 1
        plt.subplot(3 , 3 , n)
        plt.subplots_adjust(hspace = 0.5 , wspace = 0.5)
        sns.regplot(x = x , y = y , data = df)
        plt.ylabel(y.split()[0]+' '+y.split()[1] if len(y.split()) > 1 else y )
plt.show()

可以看到年龄和消费是负相关,年龄和收入没有明显的关系。

不同性别的收入

plt.figure(1 , figsize = (15 , 6))
for gender in ['Male' , 'Female']:
    plt.scatter(x = 'Age' , y = 'Annual Income (k$)' , data = df[df['Gender'] == gender] ,
                s = 200 , alpha = 0.5 , label = gender)
plt.xlabel('Age'), plt.ylabel('Annual Income (k$)') 
plt.title('Age vs Annual Income w.r.t Gender')
plt.legend()
plt.show()

性别和收入感觉也没太多关系,

plt.figure(1 , figsize = (15 , 6))
for gender in ['Male' , 'Female']:
    plt.scatter(x = 'Annual Income (k$)',y = 'Spending Score (1-100)' ,
                data = df[df['Gender'] == gender] ,s = 200 , alpha = 0.5 , label = gender)
plt.xlabel('Annual Income (k$)'), plt.ylabel('Spending Score (1-100)') 
plt.title('Annual Income vs Spending Score w.r.t Gender')
plt.legend()
plt.show()

性别和消费感觉也没太多关系,

按性别划分的年龄、年收入和支出得分的值分布

画出他们的小提琴图

plt.figure(1 , figsize = (15 , 7))
n = 0 
for cols in ['Age' , 'Annual Income (k$)' , 'Spending Score (1-100)']:
    n += 1 
    plt.subplot(1 , 3 , n)
    plt.subplots_adjust(hspace = 0.5 , wspace = 0.5)
    sns.violinplot(x = cols , y = 'Gender' , data = df , palette = 'vlag')
    sns.swarmplot(x = cols , y = 'Gender' , data = df)
    plt.ylabel('Gender' if n == 1 else '')
    plt.title('Boxplots & Swarmplots' if n == 2 else '')
plt.show()

该可视化展示了男性和女性两种性别的年龄、年收入和支出得分分布。每个子图都展示了箱线图和群图的组合,可提供有关数据分布和各个数据点的详细见解。

该可视化展示了男性和女性两种性别的年龄、年收入和支出得分分布。每个子图都展示了箱线图和群图的组合,可提供有关数据分布和各个数据点的详细见解。

分析

年龄
  • 男性:
    • 男性的年龄分布范围似乎很广,大约从 20 岁到 70 岁。
    • 较低年龄组的密度较高,表明较低年龄段的男性较多。
  • 女性:
    • 女性的年龄分布略微偏向年轻年龄组,在 20-40 岁左右的年龄段达到明显的峰值。
    • 与男性相比,女性的传播更集中在较低年龄段。
年收入
  • 男性:
    • 男性的年收入分布很广,从大约 20,000 美元到 140,000 美元不等。
    • 收入在 50,000 至 80,000 美元之间的男性密度明显较高。
  • 女性:
    • 女性的年收入范围也较大,但分布相对于男性来说稍微集中一些。
    • 密度较高,在 40,000 美元到 80,000 美元左右。
消费评分
  • 男性:
    • 男性的消费分数分布广泛,从 1 到 100。
    • 低端和高端都有峰值,表明低消费者和高消费者聚集。
  • 女性:
    • 雌性的分布与雄性相似,但中间范围的密度略高(约 50)。
    • 这表明女性的消费模式更加均衡。
重要见解
  1. 年龄分布:
    • 两种性别的人口峰值都较年轻,但男性的年龄范围更广,而女性则更多地集中在较低的年龄段。
  2. 收入分配:
    • 男性的收入范围更加多样化,而女性的收入则集中在特定范围内(40,000 美元至 80,000 美元)。
  3. 消费分数:
    • 两种性别的消费分数差异很大,男性的两端都有明显的峰值,这表明消费模式更加独特。
结论

可视化结果详细比较了男性和女性的年龄、年收入和支出分数分布。它强调,虽然两种性别有一些相似之处,但这些变量的集中度和分散度存在显著差异。男性在年龄和收入方面的分布往往更广泛,而女性则在特定范围内表现出更高的集中度。支出分数表明两种性别的消费行为各不相同,男性表现出更多的极端值。


使用 K- 均值进行聚类

1.使用年龄和消费评分进行聚类和分类客户

首先k均值我们得需要考虑K的数量。所以我们遍历1-11类,查看不同类别下的平方和距离,找一个合适值。

'''Age and spending Score'''
X1 = df[['Age' , 'Spending Score (1-100)']].iloc[: , :].values
inertia = []
for n in range(1 , 11):
    algorithm = (KMeans(n_clusters = n ,init='k-means++', n_init = 10 ,max_iter=300, 
                        tol=0.0001,  random_state= 111  , algorithm='elkan') )
    algorithm.fit(X1)
    inertia.append(algorithm.inertia_)

 可视化不同K,也就是聚类数量和平方和损失的值。

选择基于惯性的 N 个聚类(质心和数据点之间的平方距离,应更小

plt.figure(1 , figsize = (15 ,6))
plt.plot(np.arange(1 , 11) , inertia , 'o')
plt.plot(np.arange(1 , 11) , inertia , '-' , alpha = 0.5)
plt.xlabel('Number of Clusters') , plt.ylabel('Inertia')
plt.show()

可以看到k从1到4损失下降的较多,4之后就下降的比较少,所以我们选择K=4作为聚类的数量。

训练,给标签

algorithm = (KMeans(n_clusters = 4 ,init='k-means++', n_init = 10 ,max_iter=300, 
                        tol=0.0001,  random_state= 111  , algorithm='elkan') )
algorithm.fit(X1)
labels1 = algorithm.labels_
centroids1 = algorithm.cluster_centers_

 聚类中心存在centroids1里面

h = 0.02
x_min, x_max = X1[:, 0].min() - 1, X1[:, 0].max() + 1
y_min, y_max = X1[:, 1].min() - 1, X1[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = algorithm.predict(np.c_[xx.ravel(), yy.ravel()]) 

进行可视化

plt.figure(1 , figsize = (15 , 7) )
plt.clf()
Z = Z.reshape(xx.shape)
plt.imshow(Z , interpolation='nearest', 
           extent=(xx.min(), xx.max(), yy.min(), yy.max()),
           cmap = plt.cm.Pastel2, aspect = 'auto', origin='lower')

plt.scatter( x = 'Age' ,y = 'Spending Score (1-100)' , data = df , c = labels1 , 
            s = 200 )
plt.scatter(x = centroids1[: , 0] , y =  centroids1[: , 1] , s = 300 , c = 'red' , alpha = 0.5)
plt.ylabel('Spending Score (1-100)') , plt.xlabel('Age')
plt.show()

可以清楚的看到每个类别的区间,中心,和分布情况。

2.使用年收入和支出得分进行细分

现在换个2个变量来聚类,使用年收入和支出得分进行聚类和分类

一样的,寻找最优的聚类个数

'''Annual Income and spending Score'''
X2 = df[['Annual Income (k$)' , 'Spending Score (1-100)']].iloc[: , :].values
inertia = []
for n in range(1 , 11):
    algorithm = (KMeans(n_clusters = n ,init='k-means++', n_init = 10 ,max_iter=300, 
                        tol=0.0001,  random_state= 111  , algorithm='elkan') )
    algorithm.fit(X2)
    inertia.append(algorithm.inertia_)

可视化

plt.figure(1 , figsize = (15 ,6))
plt.plot(np.arange(1 , 11) , inertia , 'o')
plt.plot(np.arange(1 , 11) , inertia , '-' , alpha = 0.5)
plt.xlabel('Number of Clusters') , plt.ylabel('Inertia')
plt.show()

这一次k=5的时候感觉是拐点,

聚类,计算中心

algorithm = (KMeans(n_clusters = 5 ,init='k-means++', n_init = 10 ,max_iter=300, 
                        tol=0.0001,  random_state= 111  , algorithm='elkan') )
algorithm.fit(X2)
labels2 = algorithm.labels_
centroids2 = algorithm.cluster_centers_
h = 0.02
x_min, x_max = X2[:, 0].min() - 1, X2[:, 0].max() + 1
y_min, y_max = X2[:, 1].min() - 1, X2[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z2 = algorithm.predict(np.c_[xx.ravel(), yy.ravel()]) 

可视化

plt.figure(1 , figsize = (15 , 7) )
plt.clf()
Z2 = Z2.reshape(xx.shape)
plt.imshow(Z2 , interpolation='nearest', 
           extent=(xx.min(), xx.max(), yy.min(), yy.max()),
           cmap = plt.cm.Pastel2, aspect = 'auto', origin='lower')

plt.scatter( x = 'Annual Income (k$)' ,y = 'Spending Score (1-100)' , data = df , c = labels2 , 
            s = 200 )
plt.scatter(x = centroids2[: , 0] , y =  centroids2[: , 1] , s = 300 , c = 'red' , alpha = 0.5)
plt.ylabel('Spending Score (1-100)') , plt.xlabel('Annual Income (k$)')
plt.show()

可视化,很清楚的看到每个类别的分布,中心,和区间。

3.使用年龄、年收入和支出分数进行细分

上面是用2个变量,现在吧全部三个变量都用上进行聚类

一样的,先找K的最优取值。

X3 = df[['Age' , 'Annual Income (k$)' ,'Spending Score (1-100)']].iloc[: , :].values
inertia = []
for n in range(1 , 11):
    algorithm = (KMeans(n_clusters = n ,init='k-means++', n_init = 10 ,max_iter=300, 
                        tol=0.0001,  random_state= 111  , algorithm='elkan') )
    algorithm.fit(X3)
    inertia.append(algorithm.inertia_)

可视化

plt.figure(1 , figsize = (15 ,6))
plt.plot(np.arange(1 , 11) , inertia , 'o')
plt.plot(np.arange(1 , 11) , inertia , '-' , alpha = 0.5)
plt.xlabel('Number of Clusters') , plt.ylabel('Inertia')
plt.show()

这次K=6的时候比较合适

algorithm = (KMeans(n_clusters = 6 ,init='k-means++', n_init = 10 ,max_iter=300, 
                        tol=0.0001,  random_state= 111  , algorithm='elkan') )
algorithm.fit(X3)
labels3 = algorithm.labels_
centroids3 = algorithm.cluster_centers_

三维的图可视化就麻烦点,就用plotly来画

df['label3'] =  labels3
trace1 = go.Scatter3d(
    x= df['Age'],
    y= df['Spending Score (1-100)'],
    z= df['Annual Income (k$)'],
    mode='markers',
     marker=dict(
        color = df['label3'], 
        size= 20,
        line=dict(
            color= df['label3'],
            width= 12
        ),
        opacity=0.8
     )
)
data = [trace1]
layout = go.Layout(
#     margin=dict(
#         l=0,
#         r=0,
#         b=0,
#         t=0
#     )
    title= 'Clusters',
    scene = dict(
            xaxis = dict(title  = 'Age'),
            yaxis = dict(title  = 'Spending Score'),
            zaxis = dict(title  = 'Annual Income')
        )
)
fig = go.Figure(data=data, layout=layout)
py.offline.iplot(fig)

这个图在jupyter里面是可以进行拖拽和放大的,很方便的观察不同客户的特点。

可以看到不同类别的客户特点,来以此进行定制化策略。


创作不易,看官觉得写得还不错的话点个关注和赞吧,本人会持续更新python数据分析领域的代码文章~(需要定制类似的代码可私信)

  • 19
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
K均值聚类算法是一种常用的无监督学习算法,用于将数据集划分为K个不同的簇。该算法的目标是使得每个数据点与其所属簇的中心点之间的距离最小化。以下是K均值聚类算法的步骤及其可视化过程: 1. 初始化:随机选择K个中心点作为初始的簇中心。 2. 分配数据点:将每个数据点分配给与其距离最近的簇中心。 3. 更新簇中心:计算每个簇的新中心点,即该簇中所有数据点的平均值。 4. 重复步骤2和3,直到簇中心不再发生变化或达到最大迭代次数。 可视化过程可以通过绘制数据点和簇中心的散点图来展示。每个数据点根据其所属簇的不同,使用不同的颜色进行标记。同时,可以绘制决策边界来显示簇的分布情况。 以下是K均值聚类算法及其可视化的示例代码: ```python import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans # 生成示例数据 X = np.array([[1, 2], [1, 4], [1, 0], [4, 2], [4, 4], [4, 0]]) # 创建KMeans对象并指定簇的数量为2 kmeans = KMeans(n_clusters=2) # 执行K均值聚类算法 kmeans.fit(X) # 获取簇中心和簇标签 centers = kmeans.cluster_centers_ labels = kmeans.labels_ # 绘制数据点和簇中心的散点图 plt.scatter(X[:, 0], X[:, 1], c=labels) plt.scatter(centers[:, 0], centers[:, 1], marker='x', color='red') plt.xlabel('X') plt.ylabel('Y') plt.title('K-means Clustering') plt.show() ``` 该代码将生成一个散点图,其中数据点根据其所属簇的不同使用不同的颜色进行标记,簇中心用红色的"X"标记。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阡之尘埃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值