【算法设计与分析】 最大子段和(分治递归)

【算法设计与分析】 最大子段和(分治递归)

【问题描述】
使用分治递归算法解最大子段和问题,具体来说就是,将序列分为长度相等的左右两段,分别求出这两段的最大子段和,包含左右部分子段的最大子段和,求这三种情况得到的最大子段和的最大值。

【输入形式】
在屏幕上输入一个序列元素,包含负整数、0和正整数。

【输出形式】
序列的最大子段和,及得到最大子段和时的起始和终止编号。

【样例输入】

-2 11 -4 13 -5 -2

【样例输出】

20
2
4

【样例说明】
输入:6个数,元素间以空格分隔。
输出:序列的最大子段和20,得到最大子段和时的起始编号为2,终止编号为4。

【题解代码】

C++代码:

#include <iostream>
#include <cstdio>
#include <sstream>
using namespace std;
int a[100],t,n=0,ans=0,ansleft=0,ansright=0;
int Maxsum(int left,int right,int &ansl,int &ansr)
{
	int l1=1,r1=1,l2=1,r2=1,l3=1,r3=1;
	if(left==right)
	{
		if(a[left]>0)
		{
			ansl=ansr=left;
			return a[left];
		}
		else
			return 0;
	}
	else
	{
		int mid=left+(right-left)/2;
		int sum1=Maxsum(left,mid,l1,r1);//情况1:最大子段与左半部分相同 
		int sum2=Maxsum(mid+1,right,l2,r2);//情况2:最大子段与右半部分相同 
		int sum3=0,s1=0,s2=0,temp1=0,temp2=0;//情况3:最大子段跨越左右两个部分 
		for(int i=mid;i>=left;i--)
		{
			temp1+=a[i];
			if(temp1>s1)
			{
				s1=temp1;
				l3=i;
			}
		}
		for(int i=mid+1;i<=right;i++)
		{
			temp2+=a[i];
			if(temp2>s2)
			{
				s2=temp2;
				r3=i;
			}
		}
		sum3=s1+s2;
		ansl=l3;
		ansr=r3;
		if(sum3<=sum1)
		{
			sum3=sum1;
			ansl=l1;
			ansr=r1;
		}
		if(sum3<=sum2)//细节:这里要用<= 
		{
			sum3=sum2;
			ansl=l2;
			ansr=r2;
		}
		return sum3;//最大子段优先选择:左>中>右 
	}
}
int main()
{
	ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
	stringstream scin;
	string s;
	getline(cin,s);
	scin<<s;
	while(scin>>t)
		a[++n]=t;
	ans=Maxsum(1,n,ansleft,ansright);
	cout<<ans<<endl<<ansleft<<endl<<ansright<<endl;
	return 0;
}
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

球王武磊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值