【Java基础】HashMap和ConcurrentHashMap详细笔记

HashMap

一、HashMap 集合简介

  • HashMap 基于哈希表的 Map 接口实现,是以 key-value 存储形式存在,即主要用来存放键值对。HashMap 的实现不是同步的,这意味着它不是线程安全的。它的 key、value 都可以为 null,此外,HashMap 中的映射不是有序的。

  • jdk1.8 之前 HashMap 由 数组 + 链表 组成,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突(两个对象调用的 hashCode 方法计算的哈希值一致导致计算的教组索引值相同)而存在的(“拉链法”解决冲突)。jdk1.8 以后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(或者红黑树的边界值,默认为 8 )并且当前数组的长度大于64时,此时此索引位置上的所有数据改为使用红黑树存储。
    在这里插入图片描述

    什么是哈希冲突?
    你可以把hash想象成一个数组,现在你想把一个数据存到hash表中。那么问题来了:这个数据应该存到哪里?

    于是,你需要一个hash函数,这个函数的作用就是把你要存的数据映射成hash表中的一个位置,这个位置就是你要存放该数据的地方。一般把hash表的每个位置都叫做“槽(slot)”,很形象,你要往槽里放数据。假如你要存的数据为k,存放在哪个槽里呢?很简单,存在hash(k)这个槽里。

    这个hash函数是你自定义的。这里我以《算法导论》里面的一个题目举例:现在你选的hash函数是这样的(取模法):

    hash(k) = k mod 9
    

    假设hash表的大小为9(即有9个槽),现在要把一串数据存到表里:5,28,19,15,20,33,12,17,10

    简单计算一下:hash(5)=5, 所以数据5应该放在hash表的第5个槽里;hash(28)=1,所以数据28应该放在hash表的第1个槽里;hash(19)=1,也就是说,数据19也应该放在hash表的第1个槽里——于是就造成了碰撞(也称为冲突,collision)。
    影响产生冲突多少有以下三个因素:
    1.散列函数是否均匀;2.处理冲突的方法;3.散列表的装填因子。
    如果数据的分布比较广泛,而且储存数据的数组长度比较大,那么哈希冲突就比较少,否则冲突是很高的。
    **哈希冲突的常用解决办法:**链式地址法

  • 补充:将链表转换成红黑树前会判断,即便阈值大于8,但是数组长度小于64,此时并不会将链表变为红黑树,而是选择逬行数组扩容。

    这样做的目的是因为数组比较小,尽量避开红黑树结构,这种情况下变为红黑树结构,反而会降低效率,因为红黑树需要逬行左旋,右旋,变色这些操作来保持平衡。同时数组长度小于64时,搜索时间相对要快些。所以结上所述为了提高性能和减少搜索时间,底层阈值大于8并且数组长度大于64时,链表才转换为红黑树,具体可以参考 treeifyBin() 方法。

    当然虽然增了红黑树作为底层数据结构,结构变得复杂了,但是阈值大于8并且数组长度大于64时,链表转换为红黑树时,效率也变的更高效。

  • 小结:

    HashMap 特点:

    1. 存储无序的。

    2. 键和值位置都可以是 null,但是键位置只能存在一个 null。

    3. 键位置是唯一的,是底层的数据结构控制的。

    4. jdk1.8 前数据结构是链表+数组,jdk1.8 之后是链表+数组+红黑树

    5. 阈值(边界值)> 8 并且数组长度大于 64,才将链表转换为红黑树,变为红黑树的目的是为了高效的查询。

二、HashMap 集合底层的数据结构

2.1 存储数据的过程

示例代码:

HashMap<String, Integer> map = new HashMap<>();
map.put("柳岩", 18);
map.put("杨幂", 28);
map.put("刘德华", 40);
map.put("柳岩", 20);

输出结果:

{
   杨幂=28, 柳岩=20, 刘德华=40}

分析:

  1. 当创建 HashMap 集合对象的时候,在 jdk1.8 之前,构造方法中创建一个长度是16的 Entry[] table 用来存储键值对数据的。在 jdk1.8 以后不是在 HashMap 的构造方法底层创建数组了,是在第一次调用 put 方法时创建的数组 Node[] table 用来存储键值对数据。

  2. 假设向哈希表中存储 <柳岩,18> 数据,根据柳岩调用 String 类中重写之后的 hashCode() 方法计算出值,然后结合数组长度采用某种算法计算出向 Node 数组中存储数据的空间的索引值。如果计算出的索引空间没有数据,则直接将<柳岩,18>存储到数组中。(举例:计算出的索引是 3 )

  3. 向哈希表中存储数据 <刘德华,40>,假设算出的 hashCode() 方法结合数祖长度计算出的索引值也是3,那么此时数组空间不是 null,此时底层会比较柳岩和刘德华的 hash 值是否一致,如果不一致,则在空间上划出一个结点来存储键值对数据对 <刘德华,40>,这种方式称为拉链法。

  4. 假设向哈希表中存储数据 <柳岩,20>,那么首先根据柳岩调用 hashCode() 方法结合数组长度计算出索引肯定是 3,此时比较后存储的数据柳岩和已经存在的数据的 hash 值是否相等,如果 hash 值相等,此时发生哈希碰撞。那么底层会调用柳岩所属类 String 中的 equals() 方法比较两个内容是否相等:

    相等:将后添加的数据的 value 覆盖之前的 value。

    不相等:继续向下和其他的数据的 key 进行比较,如果都不相等,则划出一个结点存储数据,如果结点长度即链表长度大于阈值 8 并且数组长度大于 64 则将链表变为红黑树。
    在这里插入图片描述

  5. 在不断的添加数据的过程中,会涉及到扩容问题,当超出阈值(且要存放的位置非空)时,扩容。默认的扩容方式:扩容为原来容量的 2 倍,并将原有的数据复制过来。

  6. 综上描述,当位于一个表中的元素较多,即 hash 值相等但是内容不相等的元素较多时,通过 key 值依次查找的效率较低。而 jdk1.8 中,哈希表存储采用数组+链表+红黑树实现,当链表长度(阈值)超过8且当前数组的长度大于64时,将链表转换为红黑树,这样大大减少了查找时间。

    简单的来说,哈希表是由数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的。如下图所示:
    在这里插入图片描述

  7. jdk1.8 中引入红黑树的进一步原因:

    jdk1.8以前 HashMap 的实现是数组+链表,即使哈希函数取得再好,也很难达到元素百分百均匀分布。当HashMap中有大量的元素都存放到同一个桶中时,这个桶下有一条长长的链表,这个时候 HashMap 就相当于一个单链表,假如单链表有n个元素,遍历的时间复杂度就是O(n),完全失去了它的优势。

    针对这种情况,jdk1.8中引入了红黑树(查找时间复杂度为O(logn))来优化这个问题。当链表长度很小的时候,即使遍历,速度也非常快,但是当链表长度不断变长,肯定会对查询性能有一定的影响,所以才需要转成树。

  8. 总结:
    在这里插入图片描述

说明:

  • size 表示 HashMap 中键值对的实时数量,注意这个不等于数组的长度。
  • threshold(临界值)= capacity(容量)* loadFactor(负载因子)。这个值是当前已占用数组长度的最大值。size超过这个值就重新 resize(扩容),扩容后的 HashMap 容量是之前容量的两倍。
2.3 面试题
  1. HashMap 中 hash 函数是怎么实现的?还有哪些hash函数的实现方式?

    答:对于 key 的 hashCode 做 hash 操作,无符号右移 16 位然后做异或运算。还有平方取中法,伪随机数法和取余数法。这三种效率都比较低。而无符号右移 16 位异或运算效率是最高的。
    
  2. 当两个对象的 hashCode 相等时会怎么样?

    答:会产生哈希碰撞。若 key 值内容相同则替换旧的 value,不然连接到链表后面,链表长度超过阈值 8 就转换为红黑树存储。
    
  3. 什么是哈希碰撞,如何解决哈希碰撞?

    答:只要两个元素的 key 计算的哈希码值相同就会发生哈希碰撞。jdk8 之前使用链表解决哈希碰撞。jdk8之后使用链表 + 红黑树解决哈希碰撞。
    
  4. 如果两个键的 hashCode 相同,如何存储键值对?

    答:通过 equals 比较内容是否相同。相同:则新的 value 覆盖之前的 value。不相同:则将新的键值对添加到哈希表中。
    

三、HashMap继承关系

HashMap继承关系如下图所示:

在这里插入图片描述

说明

  • Cloneable 空接口,表示可以克隆。创建并返回 HashMap 对象的一个副本。
  • Serializable 序列化接口。属于标记性接口。HashMap 对象可以被序列化和反序列化。
  • AbstractMap 父类提供了 Map 实现接口。以最大限度地减少实现此接口所需的工作。

补充

通过上述继承关系我们发现一个很奇怪的现象,就是 HashMap 已经继承了AbstractMap 而 AbstractMap 类实现了Map 接口,那为什么 HashMap 还要在实现 Map 接口呢?同样在 ArrayList 中 LinkedLis 中都是这种结构。

据 Java 集合框架的创始人 Josh Bloch 描述,这样的写法是一个失误。在 Java 集合框架中,类似这样的写法很多,最幵始写 Java 集合框架的时候,他认为这样写,在某些地方可能是有价值的,直到他意识到错了。显然的,jdk 的维护者,后来不认为这个小小的失误值得去修改,所以就这样保留下来了。

四、HashMap 集合类的成员

4.1 成员变量
4.1.1 serialVersionUID

序列化版本号

private static final long serialVersionUID = 362498820763181265L;
4.1.2 DEFAULT_INITIAL_CAPACITY

集合的初始化容量(必须是 2 的 n 次幂)

// 默认的初始容量是16	1 << 4 相当于 1*2的4次方
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;

说明:

  1. 桶:数组结构的每一个格格。

  2. bin:bin就是 bucket 桶?准确来说是每个桶上的节点?

  3. capacity译为容量。capacity就是指HashMap中桶的数量。默认值为16。每次扩容都是2倍(32、64…以此类推)。总之,容量都是2的幂

问题:为什么必须是 2 的 n 次幂?如果输入值不是 2 的幂比如 10 会怎么样?

HashMap 构造方法还可以指定集合的初始化容量大小:

// 构造一个带指定初始容量和默认负载因子(0.75)的空 HashMap。
HashMap(int initialCapacity)

根据上述讲解我们已经知道,当向 HashMap 中添加一个元素的时候,需要根据 key 的 hash 值,去确定其在数组中的具体位置。HashMap 为了存取高效,减少碰撞,就是要尽量把数据分配均匀,每个链表长度大致相同,这个实现的关键就在把数据存到哪个链表中的算法。

这个算法实际就是取模,hash % length,计算机中直接求余效率不如位移运算。所以源码中做了优化,使用 hash & (length - 1),而实际上 hash % length 等于 hash & ( length - 1) 的前提是 length 是 2 的 n 次幂。

例如长度为 8 的时候,3 & (8 - 1) = 3,2 & (8 - 1) = 2,不同位置上,不碰撞。

/**
* Returns a power of two size for the given target capacity.
*/
static final int tableSizeFor(int cap) {
   
  int n = cap - 1;
  n |= n >>> 1;
  n |= n >>> 2;
  n |= n >>> 4;
  n |= n >>> 8;
  n |= n >>> 16;
  return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

说明

当在实例化 HashMap 实例时,如果给定了 initialCapacity,由于 HashMap 的 capacity 必须都是 2 的幂,因此这个方法用于找到大于等于 initialCapacity 的最小的 2 的幂。

分析

  1. int n = cap - 1;
    防止 cap 已经是 2 的幂。如果 cap 已经是 2 的幂,又没有这个减 1 操作,则执行完后面的几条无符号操作之后,返回的 capacity 将是这个 cap 的 2 倍。

  2. 如果 n 这时为 0 了(经过了cap - 1后),则经过后面的几次无符号右移依然是 0,最后返回的 capacity 是1(最后有个 n + 1 的操作)。

  3. 注意:容量最大也就是 32bit 的正数,因此最后 n |= n >>> 16; 最多也就 32 个 1(但是这已经是负数了,在执行 tableSizeFor 之前,对 initialCapacity 做了判断,如果大于MAXIMUM_CAPACITY(2 ^ 30),则取 MAXIMUM_CAPACITY。如果等于MAXIMUM_CAPACITY,会执行位移操作。所以这里面的位移操作之后,最大 30 个 1,不会大于等于 MAXIMUM_CAPACITY。30 个 1,加 1 后得 2 ^ 30)。

完整例子

在这里插入图片描述

注意:得到的这个 capacity 却被赋值给了 threshold。

this.threshold = tableSizeFor(initialCapacity);
4.1.3 DEFAULT_LOAD_FACTOR

默认的负载因子(默认值 0.75)

static final float DEFAULT_LOAD_FACTOR = 0.75f;
4.1.4 MAXIMUM_CAPACITY

集合最大容量

static final int MAXIMUM_CAPACITY = 1 << 30; // 2的30次幂
4.1.5 TREEIFY_THRESHOLD

当链表的值超过8则会转为红黑树(jdk1.8新增)

// 当桶(bucket)上的结点数大于这个值时会转为红黑树
static final int TREEIFY_THRESHOLD = 8;

问题:为什么 Map 桶中结点个数超过 8 才转为红黑树?

8这个阈值定义在HashMap中,针对这个成员变量,在源码的注释中只说明了 8 是 bin(bin就是 bucket 桶?准确来说是每个桶上的节点?)从链表转成树的阈值,但是并没有说明为什么是 8。

在 HashMap 中有一段注释说明:

Because TreeNodes are about twice the size of regular nodes, we use them only when bins
contain enough nodes to warrant use (see TREEIFY_THRESHOLD). And when they become too
small (due to removal or resizing) they are converted back to plain bins.  In usages with
well-distributed user hashCodes, tree bins are rarely used.  Ideally, under random hashCodes, 
the frequency of nodes in bins follows a Poisson distribution 
(http://en.wikipedia.org/wiki/Poisson_distribution) 
with a parameter of about 0.5 on average for the default resizing
threshold of 0.75, although with a large variance because of resizing granularity. Ignoring variance, 
the expected occurrences of list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The first values are:

翻译:因为树结点的大小大约是普通结点的两倍,所以我们只在箱子包含足够的结点时才使用树结点(参见TREEIFY_THRESHOLD)。
当它们变得太小(由于删除或调整大小)时,就会被转换回普通的桶。在使用分布良好的用户 hashCode 时,很少使用树箱。
理想情况下,在随机哈希码下,箱子中结点的频率服从泊松分布
(http://en.wikipedia.org/wiki/Poisson_distribution) ,默认调整阈值为0.75,平均参数约为0.5,尽管由 
于调整粒度的差异很大。忽略方差,列表大小k的预朗出现次数是(exp(-0.5) * pow(0.5, k) / factorial(k))。 
第一个值是:

0:    0.60653066
1:    0.30326533
2:    0.07581633
3:    0.01263606
4:    0.00157952
5:    0.00015795
6:    0.00001316
7:    0.00000094
8:    0.00000006
more: less than 1 in ten million

TreeNodes 占用空间是普通 Nodes 的两倍,所以只有当 bin 包含足够多的结点时才会转成 TreeNodes,而是否足够多就是由 TREEIFY_THRESH〇LD 的值决定的。当 bin 中结点数变少时,又会转成普通的 bin。并且我们查看源码的时候发现,链表长度达到 8 就转成红黑树,当长度降到 6 就转成普通 bin。

这样就解释了为什么不是一开始就将其转换为 TreeNodes,而是需要一定结点数才转为 TreeNodes,说白了就是权衡空间和时间。

这段内容还说到:当 hashCode 离散性很好的时候,树型 bin 用到的概率非常小,因为数据均匀分布在每个 bin 中,几乎不会有 bin 中链表长度会达到阈值。但是在随机 hashCode 下,离散性可能会变差,然而 jdk 又不能阻止用户实现这种不好的 hash 算法,因此就可能导致不均匀的数据分布。不理想情况下随机 hashCode 算法下所有 bin 中结点的分布频率会遵循泊松分布,我们可以看到,一个 bin 中链表长度达到 8 个元素的槪率为 0.00000006,几乎是不可能事件。所以,之所以选择 8,不是随便決定的,而是裉据概率统计决定的。甶此可见,发展将近30年的 Java 每一项改动和优化都是非常严谨和科学的。

也就是说:选择 8 因为符合泊松分布,超过 8 的时候,概率已经非常小了,所以我们选择 8 这个数宇。

补充

  • Poisson 分布(泊松分布),是一种统计与概率学里常见到的离散[概率分布]。泊松分布的概率函数为:
    公式
    泊松分布的参数 A 是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。

  • 以下是我在研究这个问题时,在一些资料上面翻看的解释,供大家参考:

    红黑树的平均查找长度是 log(n),如果长度为 8,平均查找长度为 log(8) = 3,链表的平均查找长度为 n/2,当长度为 8 时,平均查找长虔为 8/2 = 4,这才有转换成树的必要;链表长度如果是小于等于 6, 6/2 = 3,而 log(6) = 2.6,虽然速度也很快的,但是转化为树结构和生成树的时间并不会太短。

4.1.6 UNTREEIFY_THRESHOLD

当链表的值小于 6 则会从红黑树转回链表

// 当桶(bucket)上的结点数小于这个值,树转为链表 
static final int UNTREEIFY_THRESHOLD = 6;
4.1.7 MIN_TREEIFY_CAPACITY

当 Map 里面的数量超过这个值时,表中的桶才能进行树形化,否则桶内元素太多时会扩容,而不是树形化为了避免进行扩容、树形化选择的冲突,这个值不能小于4*TREEIFY_THRESHOLD(8)

// 桶中结构转化为红黑树对应的数组长度最小的值 
static final int MIN_TREEIFY_CAPACITY = 64;
4.1.8 table

table 用来初始化(必须是二的n次幂)(重点)

// 存储元素的数组 
transient Node<K,V>[] table;

在 jdk1.8 中我们了解到 HashMap 是由数组加链表加红黑树来组成的结构,其中 table 就是 HashMap 中的数组,jdk8 之前数组类型是 Entry<K,V> 类型。从 jdk1.8 之后是 Node<K,V> 类型。只是换了个名字,都实现了一样的接口:Map.Entry<K,V>。负责存储键值对数据的。

4.1.9 entrySet

用来存放缓存

// 存放具体元素的集合
transient Set<Map.Entry<K,V>> entrySet;
4.1.10 size

HashMap 中存放元素的个数(重点)

// 存放元素的个数,注意这个不等于数组的长度
 transient int size;

size 表示 HashMap 中存放 K-V 的实时数量(为链表和树中的KV的总和),不是数组 table 的长度。

4.1.11 modCount

用来记录 HashMap 的修改次数

// 每次扩容和更改 map 结构的计数器
 transient int modCount;  
4.1.12 threshold

用来调整大小下一个容量的值计算方式为(容量*负载因子)

// 临界值 当实际大小(容量*负载因子)超过临界值时,会进行扩容
int threshold;
4.1.13 loadFactor

哈希表的负载因子(重点)

// 负载因子
final float loadFactor;

说明

  • loadFactor 是用来衡量 HashMap 满的程度,表示HashMap的疏密程度,影响 hash 操作到同一个数组位置的概率,计算 HashMap 的实时负载因子的方法为:size/capacity,而不是占用桶的数量去除以 capacity。capacity 是桶的数量,也就是 table 的长度 length。

在这里插入图片描述

  • loadFactor 太大导致查找元素效率低,太小导致数组的利用率低,存放的数据会很分散。loadFactor 的默认值为 0.75f 是官方给出的一个比较好的临界值。

  • 当 HashMap 里面容纳的元素已经达到 HashMap 数组长度的 75% 时,表示 HashMap 太挤了,需要扩容,而扩容这个过程涉及到 rehash、复制数据等操作,非常消耗性能。所以开发中尽量减少扩容的次数,可以通过创建 HashMap 集合对象时指定初始容量来尽量避免。

  • 在 HashMap 的构造器中可以定制 loadFactor。

// 构造方法,构造一个带指定初始容量和负载因子的空HashMap
HashMap(int initialCapacity, float loadFactor);
  • 为什么负载因子设置为0.75,初始化临界值是12?

    loadFactor 越趋近于1,那么 数组中存放的数据(entry)也就越多,也就越密,也就是会让链表的长度增加,loadFactor 越小,也就是趋近于0,数组中存放的数据(entry)也就越少,也就越稀疏。

在这里插入图片描述

如果希望链表尽可能少些,要提前扩容。有的数组空间有可能一直没有存储数据,负载因子尽可能小一些。

举例:

例如:负载因子是0.4。 那么16*0.4--->6 如果数组中满6个空间就扩容会造成数组利用率太低了。
	 负载因子是0.9。 那么16*0.9--->14 那么这样就会导致链表有点多了,导致查找元素效率低。

所以既兼顾数组利用率又考虑链表不要太多,经过大量测试 0.75 是最佳方案。

  • threshold 计算公式:capacity(数组长度默认16) * loadFactor(负载因子默认0.75)。

    这个值是当前已占用数组长度的最大值。当 Size >= threshold 的时候,那么就要考虑对数组的 resize(扩容),也就是说,这个的意思就是 衡量数组是否需要扩增的一个标准。 扩容后的 HashMap 容量是之前容量的两倍。

4.2 构造方法

HashMap 中重要的构造方法,它们分别如下:

4.2.1 HashMap()

构造一个空的HashMap,默认初始容量(16)和默认负载因子(0.75)。

public HashMap() {
   
   this.loadFactor = DEFAULT_LOAD_FACTOR; // 将默认的负载因子0.75赋值给loadFactor,并没有创建数组
}
4.2.2 HashMap(int initialCapacity)

构造一个具有指定的初始容量和默认负载因子(0.75)HashMap 。

 // 指定“容量大小”的构造函数
public HashMap(int initialCapacity) {
   
    this(initialCapacity, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值