- 博客(3)
- 收藏
- 关注
原创 【Word2Vec模型】
Word2Vec 是一种用于自然语言处理(NLP)的词嵌入技术,最早由 Google 在 2013 年提出。它通过将词汇表示为固定大小的向量,使得这些向量能够捕捉词汇之间的语义关系。Word2Vec 的主要目标是将词汇映射到一个高维向量空间,使得在这个空间中,具有相似语义的词汇距离较近。NNLM和Word2Vec网络架构一模一样(不考虑细节的话)" 我是最_的Joyce""帅”“帅”" 我是最_的Joyce”
2024-07-05 16:38:15
778
原创 【Transformer(2)——预训练】
任务A、任务B极其相似,任务A已经训练出一个模型A,使用任务A的浅层参数去训练任务B,得到任务B。2、微调:浅层参数会跟着任务B训练而改变(常用)1、冻结:浅层参数不变。
2024-07-04 17:52:37
267
1
原创 Transformer(1)[Transformer 和 BERT]
Transformer是一种用于自然语言处理(NLP)和其他序列到序列任务的神经网络架构,由Vaswani等人在2017年的论文“Attention is All You Need”中提出。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer完全依赖自注意力(self-attention)机制来处理输入和输出序列,从而克服了RNN在处理长序列时存在的一些问题,如梯度消失和梯度爆炸。
2024-07-04 17:32:36
1781
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅