64. 最小路径和

一.题目

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例 1:
在这里插入图片描述
输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

示例 2:
输入:grid = [[1,2,3],[4,5,6]]
输出:12

提示:

m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 100

来源:力扣(LeetCode)
链接:题目来源

二.分析

(1)我们要记录走过的路径长度,可以建立一个二维数组dp,我们用 dp[i][j] 来记录到该位置的最短路径长度。因为它只能向下或向右移动一步,所以最上面一行以及最左边一列的记录只需要将它的左边的值/上面的值加入即可。

(2)对于其他位置的值我们要考虑它左边以及上面的值,选择较小的一个加入该位置,最后输出dp数组的最后一个数。

(3)状态转移方程: dp[i][j] = min(dp[i-1][j],dp[i][j-1]) + grid[i][j];

三.代码

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int m=grid.size();
        int n=grid[0].size();
        vector<vector<int>>dp(m,vector<int>(n));
        dp[0][0]=grid[0][0];
        
        for(int i=1;i<m;i++) 
            dp[i][0]=grid[i][0]+dp[i-1][0];
        for(int i=1;i<n;i++)
            dp[0][i]=grid[0][i]+dp[0][i-1];

        for(int i=1;i<m;i++)
        {
            for(int j=1;j<n;j++)
            {
                dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j];
            }
        }
        return dp[m-1][n-1];
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

比奇堡咻飞兜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值