-恰饭第一名-
码龄5年
关注
提问 私信
  • 博客:162,840
    社区:9
    动态:53
    162,902
    总访问量
  • 209
    原创
  • 17,977
    排名
  • 2,009
    粉丝

个人简介:流水不争先,争的是滔滔不绝(重补基础中)

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2020-02-15
博客简介:

学习记录

查看详细资料
  • 原力等级
    领奖
    当前等级
    5
    当前总分
    983
    当月
    52
个人成就
  • 获得1,124次点赞
  • 内容获得182次评论
  • 获得1,291次收藏
  • 代码片获得18,902次分享
创作历程
  • 39篇
    2024年
  • 32篇
    2023年
  • 98篇
    2021年
  • 58篇
    2020年
成就勋章
TA的专栏
  • 计算机网络
    2篇
  • 408计网
    1篇
  • Git
  • JavaScript
    54篇
  • vue
    9篇
  • 学习笔记
    151篇
  • 数据结构
    13篇
  • php
    22篇
  • PHP项目
    2篇
  • js小demo
    5篇
  • MySQL
    10篇
  • css
    16篇
  • html
    24篇
  • Linux
    3篇
  • Axure
    1篇
  • java
    21篇
兴趣领域 设置
  • 前端
    javascriptcssvue.jsreact.jses6webpack前端框架
  • 学习和成长
    面试
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

有了数据中台,是否需要升级到数据飞轮?怎么做才能升级到数据飞轮?

每次数据的使用不仅要帮助决策,还要反过来优化数据本身,从而让数据飞轮越转越快,推动企业持续增长。要做到这一点,企业需要推动数据的“消费”,让每一个部门都能随时调取和使用这些数据。想要真正利用这些数据,你还需要一个“数据飞轮”,把这些材料变成一道道美味的菜肴。数据中台确实是数据飞轮的基础,但要让数据真正发挥作用,需要不断推动数据的使用和反馈,让它们“活”起来,成为企业业务发展的源动力。在数字化转型的时代,企业纷纷建设了“数据中台”,把各种业务数据整合在一起,仿佛是将所有材料都整理进了厨房的储物柜。
原创
发布博客 2024.09.16 ·
356 阅读 ·
4 点赞 ·
0 评论 ·
1 收藏

数据中台过时了?是否需要升级到数据飞轮?

简单来说,就是数据越多,算法越准,业务效果也越好,周而复始,越滚越快,就像一个永不停歇的飞轮。对于那些需要稳定数据基础设施的大型企业来说,数据中台仍然是不可替代的工具,特别是在处理历史数据、统一数据标准和实现跨部门数据共享方面,数据中台还是很有一套的。咱得承认,数据中台确实是个好东西。它的初衷是通过统一管理企业内部的各种数据资源,打破部门间的数据孤岛,让数据能够在不同业务间顺畅流通。近年来,随着企业数字化转型的加速,数据中台曾是风头正劲的技术解决方案,被誉为企业打破数据孤岛、提高数据利用率的关键工具。
原创
发布博客 2024.09.16 ·
381 阅读 ·
6 点赞 ·
0 评论 ·
3 收藏

人工智能(第三版)—【第三章】练习题

(a)从方块(1,1)开始,尝试解决骑士之旅问题。(提示:对于这个版本的骑士之旅问题,你可能会发现需要大量内存来解决。因此,你可能需要确定一个启发式方法,以帮助引导搜索过程。(b)尝试找到一种启发式方法,它能帮助初次求解器找到正确解----(a) 骑士之旅问题是一个经典的组合优化问题,它要求马在棋盘上访问每个方块一次,并最终回到起始方块。对于一个完整的8×8棋盘,解决骑士之旅问题是非常困难的,因为搜索空间非常大。在这种情况下,需要使用一种启发式方法来引导搜索过程。
原创
发布博客 2024.02.03 ·
1181 阅读 ·
22 点赞 ·
0 评论 ·
24 收藏

人工智能(第三版)—【第三章】讨论题

(a)给出启发式搜索的 3 种定义。(b)给出将启发式信息添加到搜索中的 3 种方式。启发式搜索方法通过利用启发式信息来引导搜索过程,可以在某些情况下更快地找到解决方案,相比盲目搜索方法更具效率和准确性。
原创
发布博客 2024.02.03 ·
1272 阅读 ·
19 点赞 ·
0 评论 ·
23 收藏

人工智能(第三版)—【第二章】编程题

(a)深度优先搜索。(b)广度优先搜索。(c)迭代加深的深度优先搜索。下面是使用Python编写的解决15拼图问题的程序,包括深度优先搜索、广度优先搜索和迭代加深的深度优先搜索算法。请注意,这个程序假设拼图是一个4x4的方格,使用数字1到15表示拼图块,0表示空格。你可以根据你的具体需求修改初始状态和目标状态。以上是一个简单的实现,但是对于较复杂的拼图问题,可能需要更高效的算法来提高搜索效率。
原创
发布博客 2024.01.27 ·
1067 阅读 ·
17 点赞 ·
0 评论 ·
22 收藏

人工智能(第三版)—【第二章】练习题

这个生成器在每一步都要确保新放置的皇后不会受到前面已放置的皇后的攻击,因此生成的搜索空间比文中的两个生成器更小。这是因为在每一步中,新放置的皇后的选择受到更多的限制,只能放在未受前面皇后攻击的方格中,而不是所有未被占据的方格。需要注意的是,尽管这个生成器是完备的和非冗余的,但是由于其随机性质,它可能需要更长的时间才能找到解,尤其是在问题规模较大时。此外,由于随机选择行的方式,生成的解可能没有特定的模式或规律,可能会导致解的质量不一致。在非确定性搜索中,节点的扩展顺序是随机的,不受特定规则或优先级的限制。
原创
发布博客 2024.01.27 ·
1166 阅读 ·
22 点赞 ·
0 评论 ·
24 收藏

人工智能(第三版)—【第二章】讨论题

状态空间图是对问题的一种表示方法。通过状态空间图,人们可以探索和分析通往解的可能的可选路径。某个具体问题的解将对应状态空间图中的一条路径。有时只需要搜索问题的任意一个解即可状态空间图常用于描述和分析复杂的系统和问题,如计算机程序、自动控制系统、游戏规则等。它可以帮助我们理解系统或问题的运行机制,找到问题的解决方案,优化系统的性能,以及进行系统的模拟和仿真。
原创
发布博客 2024.01.27 ·
959 阅读 ·
17 点赞 ·
0 评论 ·
27 收藏

人工智能(第三版)—【第一章】练习题

逆图灵测试的一个可能的实际应用是。在购票过程中,用户可能会遇到各种问题、疑虑或困惑,例如座位选择、票价查询、支付问题等。通过进行逆图灵测试,系统可以判断用户是在与人交互还是与另一台计算机交互,从而提供更加个性化和准确的服务。在这种应用场景中,逆图灵测试可以帮助系统识别并区分人类用户和自动化机器人。如果系统能够准确判断用户是人还是机器人,就可以根据不同的情况采取相应的策略。例如,对于人类用户,系统可以提供更加友好和个性化的服务,回答他们的问题,解决他们的疑虑,并提供相关的推荐和建议。
原创
发布博客 2024.01.20 ·
1472 阅读 ·
26 点赞 ·
0 评论 ·
22 收藏

人工智能(第三版)—【第一章】讨论题

ALICE(人工语言互联网计算机实体)是一个基于经验的人工智能聊天机器人,它通过了世界著名的图灵测验并作为“最像人类的计算机”两次获得AI科学界最高荣誉洛伯纳(Loebner)奖,但是它唯一的缺陷就是不支持中文聊天。ALICE(人工语言互联网计算机实体),也称为Alicebot或简称Alice,是一种自然语言处理聊天 机器人–一种通过对人类输入应用一些启发式模式匹配规则来与人类对话的程序。它的灵感来自Joseph Weizenbaum的经典ELIZA程序。
原创
发布博客 2024.01.20 ·
974 阅读 ·
18 点赞 ·
0 评论 ·
27 收藏

XTuner 大模型单卡低成本微调实战

一个大语言模型微调工具箱。由MMRazor和MMDeploy联合开发。以数据集为例场景需求基于 InternLM-chat-7B 模型,用 MedQA 数据集进行微调,将其往医学问答领域对齐。此时,我们重新建一个文件夹来玩“微调自定义数据集”把前面下载好的internlm-chat-7b模型文件夹拷贝过来。别忘了把自定义数据集,即几个.jsonL,也传到服务器上。
原创
发布博客 2024.01.17 ·
1109 阅读 ·
18 点赞 ·
0 评论 ·
23 收藏

基于 InternLM 和 LangChain 搭建知识库

llm.predict("你是谁")构建检索问答链,还需要构建一个 Prompt Template,该 Template 其实基于一个带变量的字符串,在检索之后,LangChain 会将检索到的相关文档片段填入到 Template 的变量中,从而实现带知识的 Prompt 构建。from langchain . prompts import PromptTemplate # 我们所构造的 Prompt 模板 template = """使用以下上下文来回答用户的问题。如果你不知道答案,就说你不知道。
原创
发布博客 2024.01.17 ·
1176 阅读 ·
29 点赞 ·
0 评论 ·
21 收藏

PyTorch损失函数(二)

nn.L1Loss是一个用于计算输入和目标之间差异的损失函数,它计算输入和目标之间的绝对值差异。reductionnonesummeannonesummean例如,如果输入是一个大小为的张量,目标是一个相同大小的张量,表示每个样本的类别标签,可以使用nn.L1Loss计算它们之间的绝对值差异。tensor(1.)这表示输入和目标之间的平均绝对值差异为1.0。
原创
发布博客 2024.01.14 ·
1269 阅读 ·
21 点赞 ·
1 评论 ·
20 收藏

leetcode第365题:水壶问题

有两个水壶,容量分别为 jug1Capacity 和 jug2Capacity 升。水的供应是无限的。确定是否有可能使用这两个壶准确得到 targetCapacity 升。如果可以得到 targetCapacity 升水,最后请用以上水壶中的一或两个来盛放取得的 targetCapacity 升水。
原创
发布博客 2024.01.14 ·
1155 阅读 ·
26 点赞 ·
0 评论 ·
21 收藏

PyTorch损失函数

损失函数:衡量模型输出与真实标签的差异这段代码定义了一个Loss函数的基类_Loss,用于定义其他具体的损失函数。在初始化方法__init__reduce和reduction。和reduce用于确定是否对损失值进行平均和降维操作,reduction则用于指定损失值的降维方式,默认为均值'mean'。基类_Loss的作用是提供了一些通用的属性和方法,其他具体的损失函数可以继承该基类,并根据自己的需求重写或添加特定的属性和方法。
原创
发布博客 2024.01.13 ·
1190 阅读 ·
28 点赞 ·
0 评论 ·
15 收藏

权值初始化

在神经网络中,梯度消失和梯度爆炸是训练过程中常见的问题。梯度消失指的是在反向传播过程中,梯度逐渐变小,导致较远处的层对参数的更新影响较小甚至无法更新。这通常发生在深层网络中,特别是使用某些激活函数(如sigmoid函数)时。当梯度消失发生时,较浅层的权重更新较大,而较深层的权重更新较小,使得深层网络的训练变得困难。梯度爆炸指的是在反向传播过程中,梯度逐渐变大,导致权重更新过大,网络无法收敛。这通常发生在网络层数较多,权重初始化过大,或者激活函数的导数值较大时。
原创
发布博客 2024.01.13 ·
1115 阅读 ·
24 点赞 ·
1 评论 ·
24 收藏

池化、线性、激活函数层

池化运算是深度学习中常用的一种操作,它可以对输入的特征图进行降采样,从而减少特征图的尺寸和参数数量。池化运算的主要目的是通过“收集”和“总结”输入特征图的信息来提取出主要特征,并且减少对细节的敏感性。在池化运算中,通常有两种常见的操作:最大池化和平均池化。最大池化(Max Pooling)是指在池化窗口内选择最大值作为输出的操作。它可以帮助提取输入特征图中的最显著特征,同时减少了特征图的尺寸。平均池化(Average Pooling)是指在池化窗口内计算平均值作为输出的操作。
原创
发布博客 2024.01.12 ·
1533 阅读 ·
36 点赞 ·
5 评论 ·
24 收藏

2021腾讯、华为前端面试题集(基础篇)

get提交和.get()提交和get提交和。
原创
发布博客 2024.01.12 ·
929 阅读 ·
13 点赞 ·
0 评论 ·
9 收藏

HJ12 字符串反转

接受一个只包含小写字母的字符串,然后输出该字符串反转后的字符串。(字符串长度不超过1000)输入一行,为一个只包含小写字母的字符串。输入一行,为一个只包含小写字母的字符串。
原创
发布博客 2024.01.11 ·
391 阅读 ·
8 点赞 ·
1 评论 ·
10 收藏

HJ23 删除字符串中出现次数最少的字符

实现删除字符串中出现次数最少的字符,若出现次数最少的字符有多个,则把出现次数最少的字符都删除。输出删除这些单词后的字符串,字符串中其它字符保持原来的顺序。接受一个只包含小写字母的字符串,然后输出该字符串反转后的字符串。(字符串长度不超过1000)数据范围:输入的字符串长度满足 1 <= n <=20 ,保证输入的字符串中仅出现小写字母。字符串只包含小写英文字母, 不考虑非法输入,输入的字符串长度小于等于20个字节。删除字符串中出现次数最少的字符后的字符串。
原创
发布博客 2024.01.11 ·
374 阅读 ·
9 点赞 ·
0 评论 ·
9 收藏

HJ10 字符个数统计

编写一个函数,计算字符串中含有的不同字符的个数。字符在 ASCII 码范围内( 0~127 ,包括 0 和 127 ),换行表示结束符,不算在字符里。不在范围内的不作统计。多个相同的字符只计算一次。例如,对于字符串 abaca 而言,有 a、b、c 三种不同的字符,因此输出 3。输入字符串 中范围在(0~127,包括0和127)字符的种数。数据范围: 1 <= n<=500。输入一行没有空格的字符串。
原创
发布博客 2024.01.10 ·
350 阅读 ·
8 点赞 ·
0 评论 ·
10 收藏
加载更多