【概率论与数理统计(研究生课程)】知识点总结5(大数定律和中心极限定理)

原文地址:【概率论与数理统计(研究生课程)】知识点总结5(大数定律和中心极限定理)

伯努利大数定律

lim ⁡ n → ∞ P { ∣ n A n − p ∣ < ϵ } = 1 \lim_{n\rightarrow\infty}P\{|\frac{n_A}{n}-p|<\epsilon\}=1 nlimP{nnAp<ϵ}=1

大数定律

lim ⁡ n → ∞ P { ∣ 1 n ∑ k = 1 ∞ X k − a n ∣ ≥ ϵ } = 0 lim ⁡ n → ∞ P { ∣ 1 n ∑ k = 1 ∞ X k − a n ∣ < ϵ } = 1 \begin{aligned} \lim_{n\rightarrow\infty}P\{|\frac{1}{n}\sum\limits_{k=1}^{\infty}X_k-a_n|\ge\epsilon \}=0 \\ \lim_{n\rightarrow\infty}P\{|\frac{1}{n}\sum\limits_{k=1}^{\infty}X_k-a_n|<\epsilon \}=1 \end{aligned} nlimP{n1k=1Xkanϵ}=0nlimP{n1k=1Xkan<ϵ}=1

切比雪夫大数定律

条件:期望、方差存在且相同
lim ⁡ n → ∞ P { ∣ 1 n ∑ k = 1 ∞ X k − μ ∣ < ϵ } = 1 lim ⁡ n → ∞ P { ∣ 1 n ∑ k = 1 ∞ X k − 1 n ∑ k = 1 ∞ E ( X k ) ∣ < ϵ } = 1 \begin{aligned} \lim_{n\rightarrow\infty}P\{|\frac{1}{n}\sum\limits_{k=1}^{\infty}X_k-\mu|<\epsilon \}=1 \\ \lim_{n\rightarrow\infty}P\{|\frac{1}{n}\sum\limits_{k=1}^{\infty}X_k-\frac{1}{n}\sum\limits_{k=1}^{\infty}E(X_k)|<\epsilon \}=1 \end{aligned} nlimP{n1k=1Xkμ<ϵ}=1nlimP{n1k=1Xkn1k=1E(Xk)<ϵ}=1

辛钦大数定律

条件:独立同分布,期望存在且相同
lim ⁡ n → ∞ P { ∣ 1 n ∑ k = 1 ∞ X k − μ ∣ < ϵ } = 1 \lim_{n\rightarrow\infty}P\{|\frac{1}{n}\sum\limits_{k=1}^{\infty}X_k-\mu|<\epsilon \}=1 nlimP{n1k=1Xkμ<ϵ}=1
以上定理表明,当 n n n充分大时,随机变量的算数平均值 1 n ∑ i = 1 n X i \frac{1}{n}\sum\limits_{i=1}^{n}X_i n1i=1nXi的取值几乎等于期望 μ \mu μ,这就是大数定律的含义。

大数定律独立性期望方差用途
伯努利大数定律二项分布相同相同估算概率
辛钦大数定律独立同分布相同相同估算期望
切比雪夫大数定律独立存在存在有限估算期望

中心极限定理

中心极限定理讨论:
∑ i = 1 n X i − E ( ∑ i = 1 n X i ) D ( ∑ i = 1 n X i ) \frac{\sum\limits_{i=1}^{n}X_i-E(\sum\limits_{i=1}^{n}X_i)}{\sqrt{D(\sum\limits_{i=1}^{n}X_i)}} D(i=1nXi) i=1nXiE(i=1nXi)
对应的分布函数序列收敛于正态分布。
lim ⁡ n → ∞ P { ∑ i = 1 n X i − E ( ∑ i = 1 n X i ) D ( ∑ i = 1 n X i ) ≤ x } = ∫ − ∞ x 1 2 π e − t 2 2 d t = Φ ( x ) Y n = ∑ i = 1 n X i − E ( ∑ i = 1 n X i ) D ( ∑ i = 1 n X i ) = ∑ i = 1 n X i − n μ n σ ∼ N ( 0 , 1 ) ∑ i = 1 n X i = n σ Y n + n μ ∼ N ( n μ , n σ 2 ) \begin{aligned} &\lim_{n\rightarrow\infty}P\{\frac{\sum\limits_{i=1}^{n}X_i-E(\sum\limits_{i=1}^{n}X_i)}{\sqrt{D(\sum\limits_{i=1}^{n}X_i)}}\le x\}=\int_{-\infty}^x \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt=\Phi(x) \\ &Y_n= \frac{\sum\limits_{i=1}^{n}X_i-E(\sum\limits_{i=1}^{n}X_i)}{\sqrt{D(\sum\limits_{i=1}^{n}X_i)}}=\frac{\sum\limits_{i=1}^{n}X_i-n\mu}{\sqrt{n}\sigma}\sim N(0,1) \\ &\sum\limits_{i=1}^{n}X_i=\sqrt{n}\sigma Y_n+n\mu \sim N(n\mu, n\sigma^2) \end{aligned} nlimP{D(i=1nXi) i=1nXiE(i=1nXi)x}=x2π 1e2t2dt=Φ(x)Yn=D(i=1nXi) i=1nXiE(i=1nXi)=n σi=1nXinμN(0,1)i=1nXi=n σYn+nμN(nμ,nσ2)
对任意 a ≤ b a\le b ab
P { a ≤ ∑ i = 1 n X i ≤ b } = P { a − n μ n σ ≤ ∑ i = 1 n X i − n μ n σ ≤ b − n μ n σ } ≈ Φ ( b − n μ n σ ) − Φ ( a − n μ n σ ) P\{a\le\sum\limits_{i=1}^{n}X_i\le b \}=P\{\frac{a-n\mu}{\sqrt{n}\sigma}\le \frac{\sum\limits_{i=1}^{n}X_i-n\mu}{\sqrt{n}\sigma}\le\frac{b-n\mu}{\sqrt{n}\sigma}\}\approx\Phi(\frac{b-n\mu}{\sqrt{n}\sigma})-\Phi(\frac{a-n\mu}{\sqrt{n}\sigma}) P{ai=1nXib}=P{n σanμn σi=1nXinμn σbnμ}Φ(n σbnμ)Φ(n σanμ)

德莫佛—拉普拉斯定理

η n ∼ B ( n , p ) \eta_n\sim B(n,p) ηnB(n,p)
lim ⁡ n → ∞ P { η n − n p n p ( 1 − p ) ≤ x } = ∫ − ∞ x 1 2 π e − t 2 2 d t = Φ ( x ) \lim_{n\rightarrow \infty}P\{\frac{\eta_n-np}{\sqrt{np(1-p)}}\le x \} =\int\limits_{-\infty}^x\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}dt}=\Phi(x) nlimP{np(1p) ηnnpx}=x2π 1e2t2dt=Φ(x)
即:二项分布的极限分布是正态分布。

对任意 a ≤ b a\le b ab
P { a ≤ μ n ≤ b } = P { a − n p n p q ≤ μ n − n p n p q ≤ b − n p n p q } ≈ Φ ( b − n p n p q ) − Φ ( a − n p n p q ) P\{a\le\mu_n\le b \}=P\{\frac{a-np}{\sqrt{npq}}\le \frac{\mu_n-np}{\sqrt{npq}}\le\frac{b-np}{\sqrt{npq}}\}\approx\Phi(\frac{b-np}{\sqrt{npq}})-\Phi(\frac{a-np}{\sqrt{npq}}) P{aμnb}=P{npq anpnpq μnnpnpq bnp}Φ(npq bnp)Φ(npq anp)

格列文科定理

P { lim ⁡ n → ∞ sup ⁡ − ∞ < x < + ∞ ∣ F n ( x ) − F ( x ) ∣ = 0 } = 1 P\{\lim_{n\rightarrow\infty}\sup_{-\infty< x<+\infty} |F_n(x)-F(x)|=0\}=1 P{nlim<x<+supFn(x)F(x)=0}=1

上述定理表明,样本容量 n n n足够大时,对所有 x x x F n ( x ) F_n(x) Fn(x) F ( x ) F(x) F(x)之差的绝对值都很小,这件事概率为1,这是用样本推断整体的依据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小吴不会敲代码吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值