题目大意
一个正 n n n 边形,其中第 i i i 边上有 a i a_i ai 个的特殊点。
求以这些特殊点为顶点,能组成不重合三角形个数的最大值。
题目解法
为了后面的讲解,我这里把特殊点之和定义为 A A A,特殊点个数最大的那条边的特殊点个数定义为 a m a x a_{max} amax。
通过观察图片、研究样例,可以很容易得出来一个方法:结果就是 A ÷ 3 A \div 3 A÷3。
但是,这种方法忽略了一些的特殊情况。如果其中一条边特殊点的个数大于一定的值,可能会使组成三角形的三个顶点在一条直线上,这种情况就不能组成三角形。
通过仔细思考,我们可以发现,当 a m a x = A × 2 3 a_{max} = A \times \frac{2}{3} amax=A×32 时,特殊点个数最多的那条边中每两个顶点刚好可以与其他边上的每个顶点组成一个三角形。那么,若 a m a x > A × 2 3 a_{max} > A \times \frac{2}{3} amax>A×32,按照上面的方法组成三角形就是最优方案,此时特殊点最多的那条边就会剩下几个特殊点,答案就是除了这条边以外,所有特殊点的个数之和,即 A − a m a x A-a_{max} A−amax。
最后注意:
A
A
A 的值可能会爆 int
,要开 long long
。
参考代码
#include<bits/stdc++.h>
using namespace std;
long long maxn,a,A,n;
int main()
{
cin>>n;
while(n--){
cin>>a;
A+=a;
maxn=max(a,maxn);
}
printf("%lld",(maxn*3>A*2)?A-maxn:A/3);
return 0;
}