深度学习面试
文章平均质量分 80
一条咸鱼摆摆
这个作者很懒,什么都没留下…
展开
-
深度学习面试基础--训练参数更新方法
想象一下纸团在山谷和鞍点处的运动轨迹,在山谷中纸团受重力作用沿山道滚下,两边是不规则的山壁,纸团不可避免地撞在山壁,由于质量小受山壁弹力的干扰大,从一侧山壁反弹回来撞向另一侧山壁,结果来回震荡地滚下;momentum即动量,它模拟的是物体运动时的惯性,即更新的是时候在一定程度上保留之前更新的方向,同时利用当前batch的梯度微调最终的更新方向。SGD就是最常听到的随机梯度下降方法,是使用参数的梯度,然后沿梯度的方向更新参数,并重读这个步骤多次,从而逐渐靠近最优参数。学习越深入,更新的幅度就越小。...原创 2022-08-02 07:00:00 · 1004 阅读 · 0 评论 -
深度学习面试基础--BN层
深度学习中BN层的相关介绍原创 2022-08-01 09:58:34 · 6739 阅读 · 0 评论 -
深度学习面试基础--激活函数篇
激活函数的作用激活函数对于人工神经网络模型去学习、理解复杂和非线性的函数具有十分重要的作用。可以将非线性特性引入到网络中。如果不用激活函数,每一层的输入都是上一层输出的线性函数,无论神经网络有多少层,输出都是输入的线性组合。............原创 2022-07-31 15:57:22 · 417 阅读 · 0 评论