推荐系统
文章平均质量分 90
阿牛大牛中
总得有盼头,好过每天都犯愁。
展开
-
LightGCN:Simplifying and Powering Graph Convolution Network for Recommendation【论文精读】
NCF全称:Neural Collaborative Filtering。当时(2017年),深度神经网络在语音识别、计算机视觉和自然语言处理方面取得了巨大成功。然而,深度神经网络在推荐系统上的探索相对较少。在这项工作中,作者开发基于神经网络的技术来解决推荐中的关键问题——基于隐式反馈的协同过滤。通过将内积(传统MF)替换为可以从数据中学习任意函数的神经架构,作者提出了一个通用框架NCF,称基于神经网络的协同过滤。NGCF全称:NeuralGraph用户和项目的学习向量表示(即Embedding。原创 2023-11-08 14:13:40 · 1410 阅读 · 0 评论 -
【PinSage】Graph convolutional neural networks for web-scale recommender systems【论文精读】
总的来说,这篇论文是在2017年提出的GraphSAGE基础上的一个延伸,将其采样方式进行改变,并在工业级的数据上进行部署。能完成这样一份工业级数据上进行推荐的任务是不容易的。在dgl的库中也有这个算法的一个demo,但是与本文的一些方法会有差异,我想大概是因为dgl库中要到的数据集(ml-1m)无法达到Pinterest那样的量级,所以我觉得使用了PinSage也不一定会比传统的GCN效果要好。但通过代码也可以更好的理解这个模型。这也是我的一次论文分享,如果问题请指正。原创 2023-10-17 15:02:31 · 609 阅读 · 0 评论 -
图神经网络详细内容
图神经网络中还有一个重要概念,即图采样。如果数据量过大,则是否可以仿照传统深度学习的小批量训练方式呢?答案是不可以,因为普通深度学习中的训练样本之间并不依赖,但是图结构的数据中,节点与节点之间有依赖关系,如下图:普通深度学习的训练样本在空间中是一些散点,可以随意小批量采样,无论如何采样得到的训练样本并不会丢失什么信息。而图神经网络训练样本之间存在边的依赖,也正是因为有边的依赖,也正是因为有边的依赖,所以才被称为图结构数据,这样才可用图神经网络的模型算法来训练,如果随意采样,则破坏了样本之间的关系信息。原创 2023-09-25 16:06:49 · 376 阅读 · 0 评论 -
基于图的基础推荐方式
路径是从某一个节点到另一个节点之间经过的边与节点组成的子图,包含头尾节点,如下图:上图中,由节点1开始游走,到到达节点4可以经过节点2或者节点3,所以节点1与节点4之间存在路径1–>2–>4和1–>3–>4这两条路径,而节点1到节点5只有1条路径,所以该路径是1–>5。一条路径上的边数被称为路径的阶数。例如1–>2–>4和1–>3–>4属于二阶路径。1–>5属于一阶路径,所以又可以把节点2、3、5称为节点1的一阶邻居,节点4称为节点1的二阶邻居。原创 2023-09-22 10:41:53 · 463 阅读 · 0 评论 -
Wide&Deep模型介绍
Wide&Deep模型是和的综合,是谷歌在2016年提出的。正如其名,Wide&Deep模型是由和组成的混合模型。这样的结构特点,使模型兼具了和的优点——能够快速处理并记忆大量历史行为特征,并且具有强大的表达能力。原创 2023-09-03 13:41:19 · 363 阅读 · 0 评论 -
FM算法介绍
中, ESPN 的隐向量也可以通过(ESPN, Gucci)样本进行更新, Adidas的隐向量也可以通过 (NBC, Adidas)样本进行更新,这大幅降 低了模型对数据稀疏性的要求。甚至对于 一个从未出现过的特征组合 (NBC,Gucci),由于模型之前已经分别学习过 NBC和 Gucci的隐向量, 具备了计算该特征组合权重的能力,这是 POLY2无法实现的。针对特征交叉的问题,算法工程师经常采用先于动组合特征,再通过各种分析手段筛选特征的方法,但该方法无疑是低效的。取代了单一的权重系数W。原创 2023-07-20 21:41:03 · 131 阅读 · 0 评论 -
推荐模型——逻辑回归
圄于工程团队的限制,即使其他复杂模型的效果有所提升,在没有明显击败逻辑回归模型之前, 公司也不会贸然加大计算资源的投入,升级推荐模型或 CTR 模型,这是逻辑回归持续流行的另一重要原因。使用各种特征的加权是为了综合不同特征对CTR的影响,而不同的特征的重要程度不同,所以为不同特征制定不同的权重,代表不同的重要程度。因此,在优化某模型的目标函数时,只需要对魔表函数进行求导,得到梯度的方向,沿梯度的反方向下降,并迭代此过程直到寻找到局部最小点。那么,在寻找最低点的过程中,沿哪个方向才是下降最快的方向呢?原创 2023-07-19 13:18:44 · 817 阅读 · 0 评论 -
基于知识图谱的电影推荐系统——Neo4j&Python
也可直接从这里下载:链接: https://pan.baidu.com/s/1l6wjwcUzy5G_dIlVDbCkpw 提取码: pkq6。修改main.py中的driver,输入自己数据库的用户名与密码。系统会询问是否需要重新加载并创建知识图谱,在第一次时输入1。原创 2023-06-17 16:03:35 · 4715 阅读 · 6 评论 -
推荐常用的排序学习算法——BPR(贝叶斯个性化排序)
U代表所有用户user集合;I代表所有物品item集合;S代表所有用户的隐式反馈。可知,𝑆⊆𝑈×𝐼。,所有样本构成了S。那些为观察到的数据(即用户没有产生行为的数据)标记为?。因为是基于贝叶斯的 Pairwise 方法,BPR 有两个基本假设一是每个用户之间的偏好行为相互独立,即用户u在商品i和j之间的偏好和其他用户无关。二是同一用户对不同物品的偏序相互独立,也就是用户u在商品i和j之间的偏好和其他的商品无关。原创 2023-06-06 19:31:25 · 2338 阅读 · 1 评论 -
显示反馈与隐式反馈
本文来介绍一下显示反馈与隐式反馈,作为我学习推荐系统的笔记以便日后忘记了可以回过头来温习。原创 2023-06-06 10:39:09 · 1445 阅读 · 0 评论 -
常用推荐系统评测指标
本文作为我学习推荐算法时的学习笔记,来总结一些推荐系统中的评测指标通常推荐系统的评测方法有四种:。本文主要介绍线下评测,线下评测是推荐系统的,通常有两种评测方式,一种是,一种是。(1)是一种军事演习式的测试。模拟测试当然无法代替真实数据,但是也能暴露一些问题。通常做法是先收集业务数据,也就是根据业务场景特点,构造用户访问推荐接口的参数。这些参数要尽量还原当时场景,然后拿这些参数数据去实时访问推荐推荐,产生推荐结果日志,收集这些结果日志并计算评测指标,就是离线模拟测试。原创 2023-06-05 15:03:28 · 3649 阅读 · 0 评论 -
知识图谱简介
本质上,知识图谱主要目标是用来描述真实世界中存在的各种实体和概念,以及他们之间的关系,因此可以认为是一种语义网络。主要作用:通过,建立,通过解决实际带的问题。原创 2023-06-02 14:51:30 · 287 阅读 · 0 评论 -
音乐推荐系统实战
本文选择了音乐数据集来进行个性化推荐任务,首先对数据进行预处理和整合,选择两种方法分别完成推荐任务。在相似度计算中根据用户所听过的歌曲在候选集中选择与其最相似的歌曲,存在的问题就是计算时间消耗太多,每一个用户都需要重新计算一遍才能得出推荐结果。在SVD矩阵分解的方法中,我们首先构建评分矩阵,对其进行SVD分解,然后选择待推荐用户,还原得到其对所有歌曲的估测评分值,最后排序返回结果即可。原创 2023-05-31 15:47:19 · 3026 阅读 · 3 评论 -
推荐系统算法详解
推荐系统、基于内容、基于用户、协同过滤、矩阵分解、LFM原创 2023-05-28 16:18:25 · 2772 阅读 · 0 评论 -
无监督学习——k均值
无监督学习重要的应用有两类:聚类、降维。聚类:k均值基于密度的聚类最大期望聚类降维:潜语义分析(LSA)主成分分析(PCA)奇异值分解(SVD这里主要说下k均值方法。原创 2023-05-27 15:38:02 · 1154 阅读 · 0 评论 -
机器学习模型——分类模型
决策树是一种简单高效并且具有强解释性的模型,广泛应用于数据分析领域。其本质上是一颗自上而下的由多个判断节点组成的树。条件熵-conditional entropy。都压缩到[0,1]区间内。原创 2023-05-26 17:22:47 · 2834 阅读 · 0 评论 -
机器学习模型——回归模型
损失函数是系数的函数,另外还要传入数据的x,y def compute_cost(w , b , points) : total_cost = 0 M = len(points) # 逐点计算平方损失误差,然后求平均数 for i in range(M) : x = points [ i , 0 ] y = points [ i , 1 ] total_cost +=(y - w * x - b) ** 2 # **2 代表平方 return total_cost / M。原创 2023-05-26 01:35:51 · 3589 阅读 · 1 评论 -
推荐系统简介
学习下b站上尚硅谷的推荐系统的课程,顺便做一下笔记,加深一下印象,并且方便以后回来查看。原创 2023-05-25 00:24:07 · 653 阅读 · 0 评论