最短路径一般算法总结(板子)

1 Bellman-Ford/SPFA

1.1 Bellman-Ford

1.1.1 算法复杂度

   O ( n ∗ m ) O(n*m) O(nm),其中 n为点数,m为边数。

1.1.2 算法特点

(1)求单源最短路径
(2)可以求负权图
(3)速度慢

1.1.3 算法思路

  这个算法的核心是对边的遍历,每一次遍历都根据边的俩个端点(点i->点j)去更新到j的距离 d i s [ j ] dis[j] dis[j]
d i s [ j ] = m i n ( d i s [ j ] , d i s [ i ] + w [ i , j ] ) dis[j]=min(dis[j],dis[i]+w[i,j]) dis[j]=min(dis[j],dis[i]+w[i,j])
  这样的遍历我们要做 n − 1 n-1 n1次,因为每一次遍历全部边都至少得到一个确定好最终最短距离的点,除去起点还有n-1个点,那我们做 n − 1 n-1 n1次就能保证完成任务了。

1.2 SPFA

1.2.1 算法复杂度和特点

  最优复杂度可以为 O ( n ) O(n) O(n),但在稠密图比如完全图中和Bellman-Ford一样都很慢。
  其他方面和B-F算法无异,一般用来求带负权图的单源最短路径。

1.2.2 算法思路

(Shortest Path Faster Algorithm)

  在原来的B-F算法中逐个边遍历n-1次,其中很可能很多次遍历都是不可能获得更新的,就浪费了处理时间。比如一条单链表,后面的边在初始状态下不可能对连接的点的距离更新有贡献。
  所以我们加入了个队列去维护更新后的点,将松弛过的新点入队列,之后再从队列里取点去做遍历,这样我们遍历的边的起点就都是已经松弛过后的点了,也就不会出现上一段提到过的浪费时间情况。

1.2.3 参考代码

例题POJ-2387(注意实题输出和代码中有区别)

// 单源:Bellman-Ford/SPFA
// O(n*m)可以处理负权边,还能检测负环 
// solution:用队列维护拓展点 
#include<iostream>
#include<queue>
#include<vector>
using namespace std;
const int MAXN = 1e3;
typedef struct edge{
	int v,w;  // 连接点编号,边权重 
	edge(int v0,int w0):v(v0),w(w0){}
	bool operator >(const edge &b)const{
		return w>b.w;
	}
}edge;
int n;  // 点数
int dist[MAXN+10];
int in[MAXN+10];  // in the queue?
vector<edge> G[MAXN+10];  // 用edge的vector保存整个图,G[i]表示以i点为起点的边的数组 
void spfa(int p_s){
	queue<int> Q;  // 拓展队列
	for(int i=1;i<=n;i++){  //  dist,in初始化 
		dist[i] = 0x3f3f3f3f;
		in[i] = 0;
	}  
	
	Q.push(p_s);  // 初始点初始化 
	dist[p_s] = 0;
	in[p_s] = 1;
	
	while(!Q.empty()){
		int ft = Q.front();
		Q.pop();
		in[ft] = 0;
		for(int i = 0;i < G[ft].size(); i++){ //遍历来自ft的每一条边 
			if(dist[G[ft][i].v]>dist[ft]+G[ft][i].w){
				dist[G[ft][i].v] = dist[ft]+G[ft][i].w;
				if(!in[G[ft][i].v]){  // 更新点不在队列中,将其入队 
					Q.push(G[ft][i].v);
					in[G[ft][i].v] = 1;
				}
			}
		}
	} 	
} 

int main()
{
	ios::sync_with_stdio(false);
	int T,N;  // 边数,点数。
	cin>>T>>N;
	n = N;
	for(int i=0;i<T;i++){
		int v1,v2,w;
		cin>>v1>>v2>>w;
		G[v1].push_back(edge(v2,w));
		G[v2].push_back(edge(v1,w));	
	}
	spfa(N);  // 这里求以第N个点为起点的单源最短路径

	
	for(int i=1;i<=n;i++){
		cout<<"N-->"<<i<<": ";
		cout<<dist[i]<<endl;
	}
	
	return 0;
} 

2 Dijkstra

2.1 不带堆优化的Dijkstra

2.1.1 算法复杂度

   O ( n 2 ) O(n^2) O(n2)

2.1.2 算法特点

(1)求单源最短路径
(2)不可以求负权图
(3)速度较快,常用算法。

2.1.3 算法思路

(1)维护一个集合,初始状态为一个起点,这个集合表示里面的点的 d i s t [ i ] dist[i] dist[i] 已经是最短路径了。
(2)遍历所有点,取一个集合外的离集合最近的点并入集合,并且用这个点去更新外点到集合的距离
(3)循环n-1次前两步。(实际编程中可以把起点的dist值置为0,其他的为inf,然后直接从空集合开始循环n次即可,看大家编程习惯了)

2.1.4 参考代码

例题POJ-2387(其他定义和main函数参考前面的代码)

void dijkstra(int p_s){  // p_s 为起点下标 
	for(int i=1;i<=n;i++){  // in初始化 
		dist[i] = 0x3f3f3f3f;
		in[i] = 0; 
	}  
	dist[p_s] = 0;
	for(int iii=0;iii<n;iii++){
		// findmin
		int minn = 0x3f3f3f3f;
		int minpos = 0;
		for(int i=1;i<=n;i++){
			if(!in[i]&&dist[i]<minn){
				minn = dist[i];
				minpos = i;
			}
		}
		if(minpos==0){
			//cout<<"非连通图"<<endl;
			break;
		}
		// 最近点入集合并更新 
		in[minpos] = 1;
		for(int i=0;i<G[minpos].size();i++){
			int v = G[minpos][i].v;
			if(dist[v]>minn+G[minpos][i].w){
				dist[v] = minn+G[minpos][i].w;
			}
		}
	}
}

2.2 带堆优化的Dijkstra

2.2.1 算法复杂度和特点

  由于加入了堆优化,每一次找最近点的时间降为了 O ( l o g n ) O(log n) O(logn),总体复杂度为 O ( m ∗ l o g n ) O(m*log n) O(mlogn)
  一般来说比原始的Dijkstra更快了,但是在边很多比如说完全图的时候复杂度变成了 O ( n 2 ∗ l o g n ) O(n^2*log n) O(n2logn)。选择性使用

2.2.3 算法思路

(1)用一个堆去维护当前集合到各个集合外点的距离信息。方便获得最近点。
(2)从堆中取出最小结点,将其入集合,并决定将邻近外点的距离更新并且入堆。
(3)循环至堆空

2.2.4 参考代码

例题POJ-2387(其他定义和main函数参考前面的代码)

// 堆优化:O(m*logn) 适合稀疏图
void dijkstra(int p_s){
	for(int i=1;i<=n;i++){  //  dist,in初始化 
		dist[i] = 0x3f3f3f3f;
		in[i] = 0;
	}  
	dist[p_s] = 0;
	//in[p_s] = 1;
	priority_queue<edge,vector<edge>,greater<edge> > Q;
	Q.push(edge(p_s,0));
	while(!Q.empty()){
		// 首先获得离集合最近的点信息 
		int ft = Q.top().v;  
		int dis = Q.top().w;
		Q.pop();
		//if(in[ft]) continue;
		// 最近点入集合并更新堆和新的当前最短路径  
		in[ft] = 1;
		for(int i=0;i<G[ft].size();i++){
			int v = G[ft][i].v;
			if(!in[v]&&dist[v]>dis+G[ft][i].w){
				dist[v] = dis+G[ft][i].w;
				Q.push(edge(v,dist[v]));
			}
		}
	}

}

3 Floyd

3.1 算法复杂度

   O ( n 3 ) O(n^3) O(n3)

3.2 算法特点

(1)求多源最短路径
(2)可处理负权图

3.3 算法思路

  其实就是利用动态规划:
d p [ i ] [ j ] = m i n ( d p [ i ] [ j ] , d p [ i ] [ k ] + d p [ k ] [ j ] ) . dp[i][j] = min(dp[i][j],dp[i][k]+dp[k][j]). dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]).
  我们要做的是遍历所有中间点k,然后内嵌ij遍历去做到对所有的ij距离的极小化。

3.4 参考代码

int dp[MAXN+10][MAXN+10];
void floyd(){
	for(int k=1;k<=n;k++){
		for(int i=1;i<=n;i++){
			for(int j=1;j<=n;j++){
				if(dp[i][j]>dp[i][k]+dp[k][j]){
					dp[i][j]=dp[i][k]+dp[k][j];
				}
			}
		}
	}
}
  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值