Jerry---
码龄5年
关注
提问 私信
  • 博客:9,406
    社区:4
    9,410
    总访问量
  • 3
    原创
  • 276,891
    排名
  • 19
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2020-02-19
博客简介:

我的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    108
    当月
    1
个人成就
  • 获得38次点赞
  • 内容获得9次评论
  • 获得121次收藏
  • 代码片获得804次分享
创作历程
  • 1篇
    2024年
  • 1篇
    2023年
  • 1篇
    2022年
成就勋章
TA的专栏
  • 嵌入式
    1篇
  • 《吴恩达深度学习》编程作业
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

单片机程序架构-时间片轮询架构

Description : 任务结构体* attention : 它包含了一个任务所需要的所有信息;* 1:运行状态标志位:0-不运行;1-运行。* 2:计数器TimerCountdown--* 3:计数器数值填充器,预设的初值:TimerInitialValue(任务运行间隔时间)* 4:任务对应的函数指针// 程序运行的标记:0-不运行、1-运行// 计数器// 任务运行间隔时间// 要运行的任务函数// 任务定义// 任务清单。
原创
发布博客 2024.03.01 ·
1988 阅读 ·
14 点赞 ·
1 评论 ·
31 收藏

Diffusion Models: 生成扩散模型数学推导

本文基于2020年提出的DDPM[1](Denoising diffusion probabilistic models)模型,对扩散模型的原理进行详细的介绍。对于扩散过程,在满足马尔科夫链的条件下,我们应用了重参数技巧证明了基于原始数据我们可以对任意步进行采样,并且可以使用数学表达式进行表示;对于逆扩散过程,我们应用了贝叶斯公式和高斯分布的性质进行数学推导得到了逆扩散过程的后验分布,并且应用于目标优化;对于目标优化,在已知真实数据的条件下,我们应用了极大似然估计将模型参数估计转换为对数似然估计,结合了变分
原创
发布博客 2023.07.24 ·
4273 阅读 ·
17 点赞 ·
0 评论 ·
25 收藏

Diffusion Models: 生成扩散模型数学推导

发布资源 2023.07.24 ·
pdf

《吴恩达深度学习》编程作业-第二周

基于神经网络思维模式的逻辑回归_猫识别分类器
原创
发布博客 2022.07.21 ·
3137 阅读 ·
7 点赞 ·
8 评论 ·
66 收藏