- 博客(7)
- 收藏
- 关注
原创 Regression & Model Error:bias & variance
Linear RegressionGradient Decent根据loss function的斜率找到loss function的local minimumlearning rate决定步子大小梯度正负决定移动方向(负 增加,正 减少)linear regression不需要担心saddle point,平缓处Error一般情况下,从Large bias & small variance => Small bias & Large varianceBias:.
2021-07-07 14:02:23 156
原创 Classification分类
分类问题的目标变量是离散的;回归问题的目标变量是连续的数值。神经网络模型的效果及优化的目标是通过损失函数来定义的。Gaussian Distruibution高斯分布 unique Normal DistributionMaximum Lkelihood Estimate 极大似然数 有模型,有结果数据,求得最接近结果数据的参数Naive Bayes朴素贝叶斯 each element are independent的贝叶斯Classi...
2021-07-05 16:12:56 303
转载 唯一有用的npm全局设置……
1、在欲更改的目录下新建两个文件夹,分别是:node_global_modules和node_cache,效果如图:2、打开命令提示符,执行下面两条命令: 1 2 npm config set prefix "D:\dev\nodejs\node_modules\npm\node_global_modules" npm config set cache "D:\dev\nodejs\node_modules\npm\node_cache" ...
2021-06-15 15:40:16 1195 1
原创 3.29微软笔试
3.29微软笔试朋友的笔试Codility能用遍历O(n)就不要瞎想其他算法遍历yyds!3题120分钟:1、maximum non-negative slice pair (P, Q) that A[P:Q] are all non-negative.Return maximum sum of any non-negative slice in the array.e.g.[1, 2, -3, 4, 5, -6]return 9: 4+5 = 9还是遍历就好2、把一根有N个数字
2021-03-29 10:29:30 241
原创 3.28微软笔试题目
3.28微软笔试Codility3题120分钟:1、给你一个正整数N,function f(k):F(0) = 0F(k) = F(k-1) + k求F(k) <= N时,最大的k值e.g. given 17 should return 5这题其实问的是从0连续加到k的值小于N,通过loop得出2、最大路线网络given A,B 长度一样的两个list,一个int NA[i], B[i]表示ith road两端所连接城市N表示一共几个城市求最大road network的r
2021-03-28 23:12:24 776
原创 Codility: BinaryGap
BinaryGap: Find longest sequence of zeros in binary representation of an integer (Easy)A binary gap within a positive integer N is any maximal sequence of consecutive zeros that is surrounded by ones at both ends in the binary representation of N.For exa
2021-03-28 16:28:53 174
原创 Codility算法题:MissingInteger
Codility经典算法题之九:MissingIntegerFind the smallest positive integer that does not occur in a given sequence. (Medium)This is a demo task.Write a function:def solution(A)that, given an array A of N integers, returns the smallest positive integer (greater
2021-03-28 15:15:37 621
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人